Artin's Theorem Towards the Existence of Algebraic Closures

Christoph Schwarzweller
Institute of Informatics
University of Gdańsk
Poland

Summary. This is the first part of a two-part article formalizing existence and uniqueness of algebraic closures using the Mizar system [1] , 2]. Our proof follows Artin's classical one as presented by Lang in [3]. In this first part we prove that for a given field F there exists a field extension E such that every nonconstant polynomial $p \in F[X]$ has a root in E. Artin's proof applies Kronecker's construction to each polynomial $p \in F[X] \backslash F$ simultaneously. To do so we need the polynomial ring $F\left[X_{1}, X_{2}, \ldots\right]$ with infinitely many variables, one for each polynomal $p \in F[X] \backslash F$. The desired field extension E then is $F\left[X_{1}, X_{2}, \ldots\right] \backslash I$, where I is a maximal ideal generated by all non-constant polynomials $p \in F[X]$. Note, that to show that I is maximal Zorn's lemma has to be applied.

In the second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every nonconstant polynomial $p \in A[X]$ has a root. The field of algebraic elements of A then is an algebraic closure of F. To prove uniqueness of algebraic closures, e.g. that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism $F \longrightarrow A$, where A is an algebraic closure of F can be extended to a monomorphism $E \longrightarrow A$, where E is any algebraic extension of F. In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn's lemma.

MSC: 12F05 68V20
Keywords: algebraic closures; polynomial rings with countably infinite number of variables; Emil Artin

MML identifier: FIELD_11, version: 8.1.12 5.71.1431

Let us consider ordinal numbers n, m and bags b_{1}, b_{2} of n. Now we state the propositions:
(1) If support $b_{1}=\{m\}$ and support $b_{2}=\{m\}$, then $b_{1} \leqslant b_{2}$ iff $b_{1}(m) \leqslant$ $b_{2}(m)$.
(2) If support $b_{1}=\{m\}$, then $b_{2} \mid b_{1}$ iff $b_{2}=\operatorname{EmptyBag} n$ or support $b_{2}=$ $\{m\}$ and $b_{2}(m) \leqslant b_{1}(m)$. The theorem is a consequence of (1).
(3) Let us consider a field F, ordinal numbers m, n, and a bag b of n. Suppose support $b=\{m\}$. Then
(i) len divisors $b=b(m)+1$, and
(ii) for every natural number k and for every finite subset S of n such that $S=\{m\}$ and $k \in \operatorname{dom}($ divisors $b)$ holds (divisors $b)(k)=\left(S, k-{ }^{\prime}\right.$ $1)$-bag.

The theorem is a consequence of (1) and (2).
Let n be an ordinal number and L be a right zeroed, add-associative, right complementable, right unital, distributive, non degenerated double loop structure. Let us note that PolyRing (n, L) is non degenerated.

Now we state the proposition:
(4) Let us consider a non degenerated commutative ring R, a commutative ring extension S of R, and an ordinal number n. Then $\operatorname{PolyRing}(n, S)$ is a commutative ring extension of $\operatorname{PolyRing}(n, R)$.
Proof: Every polynomial of n, R is a polynomial of n, S. The carrier of PolyRing $(n, R) \subseteq$ the carrier of $\operatorname{PolyRing}(n, S)$. For every polynomials p, q of n, R and for every polynomials p_{1}, q_{1} of n, S such that $p=p_{1}$ and $q=q_{1}$ holds $p+q=p_{1}+q_{1}$. The addition of $\operatorname{PolyRing}(n, R)=($ the addition of PolyRing $(n, S)) \upharpoonright($ the carrier of PolyRing $(n, R))$. For every polynomials p, q of n, R and for every polynomials p_{1}, q_{1} of n, S such that $p=p_{1}$ and $q=q_{1}$ holds $p * q=p_{1} * q_{1}$. The multiplication of $\operatorname{PolyRing}(n, R)=$ (the multiplication of $\operatorname{PolyRing}(n, S)) \upharpoonright($ the carrier of $\operatorname{PolyRing}(n, R))$.

Let R be a non degenerated ring, n be an ordinal number, and p be a polynomial of n, R. The functor Leading- $\operatorname{Term}(p)$ yielding a bag of n is defined by the term
(Def. 1) $\left\{\begin{array}{l}(\operatorname{SgmX}(\operatorname{BagOrder} n, \text { Support } p))(\operatorname{len} \operatorname{SgmX}(\operatorname{BagOrder} n, \text { Support } p)), \\ \quad \text { if } p \neq 0_{n} R, \\ \text { EmptyBag } n, \text { otherwise. }\end{array}\right.$
The leading coefficient of p yielding an element of R is defined by the term (Def. 2) $\quad p($ Leading- $\operatorname{Term}(p))$.

The functor Leading-Monomial p yielding a monomial of n, R is defined by the term
(Def. 3) Monom(the leading coefficient of p, Leading-Term (p)).
We introduce the notation $\mathrm{LC} p$ as a synonym of the leading coefficient of p and LT p as a synonym of Leading-Term (p) and $\mathrm{LM}(p)$ as a synonym of Leading-Monomial p.

Let us consider a non degenerated ring R, an ordinal number n, and a polynomial p of n, R. Now we state the propositions:
(5) $p=0_{n} R$ if and only if Support $p=\emptyset$.
(6) $\mathrm{LC} p=0_{R}$ if and only if $p=0_{n} R$. The theorem is a consequence of (5).
(7) Let us consider a non degenerated ring R, an ordinal number n, a polynomial p of n, R, and a bag b of n. Suppose $b \in \operatorname{Support} p$. Then $b=\operatorname{LT} p$ if and only if for every bag b_{1} of n such that $b_{1} \in \operatorname{Support} p$ holds $b_{1} \leqslant b$. The theorem is a consequence of (5).
(8) Let us consider a non degenerated ring R, an ordinal number n, and a polynomial p of n, R. Then Support $\mathrm{LM}(p) \subseteq$ Support p.
(9) Let us consider a field F, an ordinal number n, and a monomial p of n, F. Then
(i) LC $p=$ coefficient p, and
(ii) $\mathrm{LT} p=\operatorname{term} p$.

The theorem is a consequence of (5).
Let us consider a non degenerated ring R, an ordinal number n, and a polynomial p of n, R. Now we state the propositions:
(10) (i) Support $\operatorname{LM}(p)=\emptyset$, or
(ii) $\operatorname{Support} \mathrm{LM}(p)=\{\mathrm{LT} p\}$.

The theorem is a consequence of (5), (8), and (6).
(11) $\operatorname{LM}(p)=0_{n} R$ if and only if $p=0_{n} R$. The theorem is a consequence of (5), (8), and (6).
(12) (i) $(\mathrm{LM}(p))(\mathrm{LT} p)=\mathrm{LC} p$, and
(ii) for every bag b of n such that $b \neq \operatorname{LT} p$ holds $(\operatorname{LM}(p))(b)=0_{R}$.
(i) $\operatorname{LTLM}(p)=\operatorname{LT} p$, and
(ii) $\operatorname{LCLM}(p)=\mathrm{LC} p$.

Let us consider an ordinal number n, a non degenerated ring R, and elements a, b of R. Now we state the propositions:

$$
\begin{align*}
& (a \upharpoonright(n, R))+(b \upharpoonright(n, R))=a+b \upharpoonright(n, R) \tag{14}\\
& (a \upharpoonright(n, R)) *(b \upharpoonright(n, R))=a \cdot b \upharpoonright(n, R) \tag{15}
\end{align*}
$$

Let R, S be non degenerated commutative rings, n be an ordinal number, p be a polynomial of n, R, and x be a function from n into S. The functor $\operatorname{ExtEval}(p, x)$ yielding an element of S is defined by
(Def. 4) there exists a finite sequence y of elements of S such that it $=\sum y$ and len $y=\operatorname{len} \operatorname{SgmX}($ BagOrder n, Support $p)$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} y$ holds $y(i)=(p \cdot(\operatorname{SgmX}(\operatorname{BagOrder} n, \operatorname{Support} p)))(i)(\in$ $S) \cdot\left(\operatorname{eval}\left((\operatorname{SgmX}(\operatorname{BagOrder} n, \text { Support } p))_{/ i}, x\right)\right)$.
Let us consider non degenerated commutative rings R, S, an ordinal number n, and a function x from n into S. Now we state the propositions:
(16) $\operatorname{ExtEval}\left(0_{n} R, x\right)=0_{S}$. The theorem is a consequence of (5).
(17) If R is a subring of S, then $\operatorname{ExtEval}\left(1_{-}(n, R), x\right)=1_{S}$.
(18) Let us consider non degenerated commutative rings R, S, an ordinal number n, a polynomial p of n, R, and a bag b of n. Suppose Support $p=$ $\{b\}$. Let us consider a function x from n into S. Then $\operatorname{ExtEval}(p, x)=$ $p(b)(\in S) \cdot(\operatorname{eval}(b, x))$.
Proof: Reconsider $s_{2}=$ Support p as a finite subset of Bags n. Set $s_{1}=$ $\operatorname{SgmX}\left(\operatorname{BagOrder} n, s_{2}\right)$. For every object u such that $u \in \operatorname{dom} s_{1}$ holds $u \in$ $\{1\}$. Consider y being a finite sequence of elements of the carrier of S such that $\operatorname{ExtEval}(p, x)=\sum y$ and len $y=$ len $\operatorname{SgmX}(\operatorname{BagOrder} n, \operatorname{Support} p)$ and for every element i of \mathbb{N} such that $1 \leqslant i \leqslant \operatorname{len} y$ holds $y(i)=(p$. $\left.\left(\operatorname{SgmX}\left(\operatorname{BagOrder} n, s_{2}\right)\right)\right)(i)(\in S) \cdot\left(\operatorname{eval}\left(\left(\operatorname{SgmX}\left(\operatorname{BagOrder} n, s_{2}\right)\right)_{/ i}, x\right)\right)$.
Let us consider non degenerated commutative rings R, S, an ordinal number n, polynomials p, q of n, R, and a function x from n into S. Now we state the propositions:
(19) If R is a subring of S, then $\operatorname{ExtEval}(p+q, x)=$
$\operatorname{ExtEval}(p, x)+\operatorname{ExtEval}(q, x)$.
Proof: Define \mathcal{P} [natural number] \equiv for every polynomial p of n, R such that $\overline{\operatorname{Support} p}=\$_{1} \operatorname{holds} \operatorname{ExtEval}(p+q, x)=\operatorname{ExtEval}(p, x)+\operatorname{ExtEval}(q, x)$.
For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. $\mathcal{P}[0]$. For every natural number $k, \mathcal{P}[k]$.
(20) If R is a subring of S, then $\operatorname{ExtEval}(p * q, x)=$
$(\operatorname{Ext} \operatorname{Eval}(p, x)) \cdot(\operatorname{Ext} \operatorname{Eval}(q, x))$.
Proof: Define \mathcal{P} [natural number] \equiv for every polynomial p of n, R such that $\overline{\overline{\operatorname{Support} p}}=\$_{1} \operatorname{holds} \operatorname{ExtEval}(p * q, x)=(\operatorname{ExtEval}(p, x)) \cdot(\operatorname{ExtEval}(q$, $x)$). For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. $\mathcal{P}[0]$. For every natural number $k, \mathcal{P}[k]$.

Let F be a field. The functor $\mathrm{nCP}(F)$ yielding a non empty subset of the carrier of PolyRing (F) is defined by the term
(Def. 5) the set of all p where p is a non constant element of the carrier of PolyRing (F).
One can verify that $\overline{\overline{\mathrm{nCP}(F)}}$ is non empty and there exists a function from $\mathrm{nCP}(F)$ into $\overline{\overline{\mathrm{nCP}(F)}}$ which is bijective.

Let g be a function from $\mathrm{nCP}(F)$ into $\overline{\overline{\mathrm{nCP}(F)}}$ and p be a non constant element of the carrier of PolyRing (F). Observe that the functor $g(p)$ yields an ordinal number. Let m be an ordinal number and p be a polynomial over F. The functor $\operatorname{Poly}(m, p)$ yielding a polynomial of $\overline{\overline{\mathrm{nCP}(F)}}, F$ is defined by
(Def. 6) $\quad i t($ EmptyBag $\overline{\overline{\mathrm{nCP}(F)}})=p(0)$ and for every bag b of $\overline{\overline{\mathrm{nCP}(F)}}$ such that support $b=\{m\}$ holds $i t(b)=p(b(m))$ and for every bag b of $\overline{\overline{\mathrm{nCP}(F)}}$ such that support $b \neq \emptyset$ and support $b \neq\{m\}$ holds $i t(b)=0_{F}$.
Let g be a bijective function from $\operatorname{nCP}(F)$ into $\overline{\overline{\mathrm{nCP}(F)}}$. The functor $\mathrm{nCP}(g$, F) yielding a non empty subset of PolyRing $(\overline{\overline{\operatorname{nCP}(F)}}, F)$ is defined by the term
(Def. 7) the set of all $\operatorname{Poly}(g(p), p)$ where p is a non constant element of the carrier of PolyRing (F).
Let m be an ordinal number and p be a polynomial over F. Observe that $\operatorname{Poly}(m, \operatorname{LM}(p))$ is monomial-like. Now we state the propositions:
(21) Let us consider a field F, and an ordinal number m. Suppose $m \in$ $\overline{\overline{\mathrm{nCP}(F)}}$. Let us consider a polynomial p over F. Then $\operatorname{Poly}(m, p)=$ $0 \overline{\overline{\mathrm{nCP}(F)}} F$ if and only if $p=\mathbf{0} . F$. The theorem is a consequence of (5).
(22) Let us consider a field F, and an ordinal number m. Suppose $m \in$ $\overline{\overline{\mathrm{nCP}(F)}}$. Let us consider a polynomial p over F, and an element a of F. Then $\operatorname{Poly}(m, p)=a \upharpoonright(\overline{\overline{\mathrm{nCP}(F)}}, F)$ if and only if $p=a \upharpoonright F$.
(23) Let us consider a field F, and an ordinal number m. Suppose $m \in$ $\overline{\overline{\mathrm{nCP}(F)}}$. Let us consider a non zero element p of the carrier of $\operatorname{PolyRing}(F)$. Then Support $\operatorname{Poly}(m, p)=\{$ EmptyBag $\overline{\overline{\mathrm{nCP}(F)}}\}$ if and only if p is constant. The theorem is a consequence of (22) and (21).
(24) Let us consider a field F, and ordinal numbers m_{1}, m_{2}. Suppose m_{1}, $m_{2} \in \overline{\overline{\mathrm{nCP}(F)}}$. Let us consider non constant polynomials p_{1}, p_{2} over F. $\operatorname{Suppose} \operatorname{Poly}\left(m_{1}, p_{1}\right)=\operatorname{Poly}\left(m_{2}, p_{2}\right)$. Then
(i) $m_{1}=m_{2}$, and
(ii) $p_{1}=p_{2}$.

The theorem is a consequence of (21), (23), and (5).
(25) Let us consider a field F, and an ordinal number m. Suppose $m \in$ $\overline{\overline{\mathrm{nCP}(F)}}$. Let us consider a constant polynomial p over F. Then
(i) $\operatorname{LTPoly}(m, p)=\operatorname{EmptyBag} \overline{\overline{\mathrm{nCP}(F)}}$, and
(ii) $\operatorname{LCPoly}(m, p)=p(0)$.

The theorem is a consequence of (22).
(26) Let us consider a field F, and an ordinal number m. Suppose $m \in$ $\overline{\overline{\mathrm{nCP}(F)}}$. Let us consider a non constant polynomial p over F. Then
(i) $(\operatorname{LTPoly}(m, p))(m)=\operatorname{deg}(p)$, and
(ii) for every ordinal number o such that $o \neq m$ holds
$(\operatorname{LTPOly}(m, p))(o)=0$.
Proof: Set $n=\overline{\overline{\mathrm{nCP}(F)}}$. Set $q=\operatorname{Poly}(m, p)$. Reconsider $S=\{m\}$ as a finite subset of n. Reconsider $d=\operatorname{deg}(p)$ as a non zero element of \mathbb{N}. Set $b=(S, d)$-bag. $b \in$ Support q. For every bag b_{1} of n such that $b_{1} \in \operatorname{Support} q$ holds $b_{1} \leqslant b$ by [4, (7),(6)]. $b=$ LT q.
Let us consider a field F, an ordinal number m, and a polynomial p over F. Now we state the propositions:
(27) Suppose $m \in \overline{\overline{\mathrm{nCP}(F)}}$. Then
(i) $\mathrm{LCPoly}(m, \mathrm{LM}(p))=\mathrm{LCPoly}(m, p)$, and
(ii) $\operatorname{LT} \operatorname{Poly}(m, \operatorname{LM}(p))=\operatorname{LTPoly}(m, p)$.

The theorem is a consequence of (25) and (26).
(28) Suppose $m \in \overline{\overline{\mathrm{nCP}(F)}}$. Then $\operatorname{Poly}(m, \mathrm{LM}(p))=\operatorname{Monom}(\operatorname{LCPoly}(m, p)$, LT Poly $(m, p))$. The theorem is a consequence of (9) and (27).
(29) If $m \in \overline{\overline{\mathrm{nCP}(F)}}$, then $\operatorname{LM}(\operatorname{Poly}(m, p))=\operatorname{Poly}(m, \operatorname{LM}(p))$.
(30) Let us consider a field F, an ordinal number m, and polynomials p, q over F. Then $\operatorname{Poly}(m, p+q)=\operatorname{Poly}(m, p)+\operatorname{Poly}(m, q)$.
(31) Let us consider a field F, an ordinal number m, and a polynomial p over F. Then $\operatorname{Poly}(m,-p)=-\operatorname{Poly}(m, p)$.
(32) Let us consider a field F, a non zero element a of F, a natural number i, and an ordinal number m. Suppose $m \in \overline{\overline{\mathrm{nCP}(F)}}$. Then $\operatorname{Poly}(m, \operatorname{anpoly}(a$, $0)) * \operatorname{Poly}\left(m, \operatorname{anpoly}\left(1_{F}, i\right)\right)=\operatorname{Poly}(m, \operatorname{anpoly}(a, i))$. The theorem is a consequence of (22).
(33) Let us consider a field F, an element i of \mathbb{N}, and an ordinal number m. Suppose $m \in \overline{\overline{\mathrm{nCP}(F)}}$. Then Poly $\left(m, \operatorname{anpoly}\left(1_{F}, 1\right)\right) * \operatorname{Poly}\left(m, \operatorname{anpoly}\left(1_{F}\right.\right.$, $i))=\operatorname{Poly}\left(m, \operatorname{anpoly}\left(1_{F}, i+1\right)\right)$. The theorem is a consequence of (22) and (3).
(34) Let us consider a field F, a natural number i, and an ordinal number m. Suppose $m \in \overline{\overline{\mathrm{nCP}(F)}}$. Then power $\operatorname{PolyRing}\left(\overline{\overline{\mathrm{nCP}(F)}, F)}\left(\operatorname{Poly}\left(m, \operatorname{anpoly}\left(1_{F}\right.\right.\right.\right.$,
$1)), i)=\operatorname{Poly}\left(m, \operatorname{anpoly}\left(1_{F}, i\right)\right)$.
Proof: Set $f=$ power $_{\text {PolyRing }}(\overline{\overline{\operatorname{nCP}(F)}}, F)$. Define \mathcal{P} [natural number] \equiv $f\left(\operatorname{Poly}\left(m, \operatorname{anpoly}\left(1_{F}, 1\right)\right), \$_{1}\right)=\operatorname{Poly}\left(m, \operatorname{anpoly}\left(1_{F}, \$_{1}\right)\right) . \mathcal{P}[0]$ by [5, (7)], (22). For every natural number $k, \mathcal{P}[k]$.
(35) Let us consider a field F, a non constant element p of the carrier of $\operatorname{PolyRing}(F)$, and an ordinal number m. Suppose $m \in \overline{\overline{\mathrm{nCP}(F)}}$. Then $\operatorname{Poly}(m, \operatorname{anpoly}(\operatorname{LC} p, \operatorname{deg}(p)))=\operatorname{LM}(\operatorname{Poly}(m, p))$. The theorem is a consequence of (28).
(36) Let us consider a field F, and a finite subset P of the carrier of PolyRing (F). Then there exists an extension E of F such that for every non constant element p of the carrier of $\operatorname{PolyRing}(F)$ such that $p \in P$ holds p has a root in E.
Proof: Define \mathcal{P} [natural number] \equiv for every field F for every finite subset P of the carrier of $\operatorname{PolyRing}(F)$ such that $\overline{\bar{P}}=\$_{1}$ there exists an extension E of F such that for every non constant element p of the carrier of PolyRing (F) such that $p \in P$ holds p has a root in $E . \mathcal{P}[0]$ by [6, (6)]. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $\overline{\bar{P}}=n$.
(37) Let us consider a field F, an extension E of F, and an ordinal number m. Suppose $m \in \overline{\overline{\mathrm{nCP}(F)}}$. Let us consider a polynomial p over F, and a function x from $\overline{\overline{\mathrm{nCP}(F)}}$ into E. Then $\operatorname{ExtEval}(\operatorname{Poly}(m, p), x)=$ $\operatorname{ExtEval}\left(p, x_{/ m}\right)$.
Proof: Set $q=\operatorname{Poly}(m, p)$. Set $n=\overline{\overline{\mathrm{nCP}(F)}}$. Define \mathcal{P} [natural number] \equiv for every polynomial p over F for every function x from n into E such that $\overline{\overline{\operatorname{SupportPoly}(m, p)}}=\$_{1}$ holds $\operatorname{ExtEval}(\operatorname{Poly}(m, p), x)=\operatorname{ExtEval}\left(p, x_{/ m}\right)$. For every natural number $k, \mathcal{P}[k]$. Consider n being a natural number such that $\overline{\overline{\text { Support } q}}=n$.
(38) Let us consider a non degenerated commutative ring R, a non empty subset M of R, and an object o. Then $o \in M$-ideal if and only if there exists a non empty, finite subset P of R and there exists a linear combination L of P such that $P \subseteq M$ and $o=\sum L$.
Let F be a field and g be a bijective function from $\mathrm{nCP}(F)$ into $\overline{\overline{\mathrm{nCP}(F)}}$. Let us observe that $(\mathrm{nCP}(g, F))$-ideal is proper.

Let R be a non degenerated, commutative ring and I be a proper ideal of R.

A maximal ideal of I is an ideal of R defined by
(Def. 8) $I \subseteq i t$ and it is maximal.
Observe that every maximal ideal of I is maximal.

Let F be a field, g be a bijective function from $\mathrm{nCP}(F)$ into $\overline{\overline{\mathrm{nCP}(F)}}$, and I be a maximal ideal of $(\operatorname{nCP}(g, F))$-ideal. The functor $\operatorname{KroneckerField}(F, g, I)$ yielding a field is defined by the term
(Def. 9) $\frac{\text { PolyRing }(\overline{\overline{\mathrm{nCP}(F)}}, F)}{I}$.
Let n be an ordinal number and R be a non degenerated ring. The functor $\pi_{n \rightarrow n / R}$ yielding a function from R into $\operatorname{PolyRing}(n, R)$ is defined by
(Def. 10) for every element a of R, it $(a)=a \upharpoonright(n, R)$.
Let R be a non degenerated commutative ring. One can check that $\pi_{n \rightarrow n / R}$ is additive, multiplicative, and unity-preserving and $\pi_{n \rightarrow n / R}$ is monomorphic.

Let F be a field, g be a bijective function from $\operatorname{nCP}(F)$ into $\overline{\overline{\mathrm{nCP}(F)}}$, and I be a maximal ideal of $(\mathrm{nCP}(g, F))$-ideal. The functor $\operatorname{emb}(F, I, g)$ yielding a function from F into $\operatorname{KroneckerField}(F, g, I)$ is defined by the term
(Def. 11) (the canonical homomorphism of I into quotient field).
$\left(\pi_{\overline{\overline{\mathrm{nCP}(F)}} \rightarrow \overline{\overline{\mathrm{nCP}(F)}} / F}\right)$.
Note that $\mathrm{emb}(F, I, g)$ is additive, multiplicative, and unity-preserving and $\operatorname{emb}(F, I, g)$ is monomorphic and $\operatorname{KroneckerField}(F, g, I)$ is F-monomorphic and F-homomorphic.

Let m be an ordinal number. The functor $\operatorname{KrRoot}(I, m)$ yielding an element of $\operatorname{KroneckerField}(F, g, I)$ is defined by the term
(Def. 12) $\left.\left.\quad\left[\operatorname{Poly}\left(m,\left\langle 0_{F}, 1_{F}\right\rangle\right)\right]_{\text {EqRel(PolyRing }} \overline{\overline{\operatorname{nCP}(F)}}, F\right), I\right)$.
Now we state the propositions:
(39) Let us consider a field F, a bijective function g from $\mathrm{nCP}(F)$ into $\overline{\overline{\mathrm{nCP}(F)}}$, a maximal ideal I of $(\mathrm{nCP}(g, F))$-ideal, and an element a of F. Then $(\operatorname{emb}(F, I, g))(a)=[a \upharpoonright(\overline{\overline{\mathrm{nCP}(F)}}, F)]_{\operatorname{EqRel}(\operatorname{PolyRing}(\overline{\overline{\mathrm{nCP}(F)}}, F), I)}$.
(40) Let us consider a field F, a bijective function g from $\mathrm{nCP}(F)$ into $\overline{\overline{\mathrm{nCP}(F)}}$, a maximal ideal I of $(\mathrm{nCP}(g, F))$-ideal, an element p of the carrier of PolyRing (F), and an element n of \mathbb{N}. Then $(\operatorname{PolyHom}(\operatorname{emb}(F, I, g)))$ $(p)(n)=[p(n) \upharpoonright(\overline{\overline{\mathrm{nCP}(F)}}, F)]_{\operatorname{EqRel}(\operatorname{PolyRing}(\overline{\overline{\mathrm{nCP}(F)}, F), I)}}$.
The theorem is a consequence of (39).
(41) Let us consider a field F, a bijective function g from $\mathrm{nCP}(F)$ into $\overline{\overline{\mathrm{nCP}(F)}}$, a maximal ideal I of $(\mathrm{nCP}(g, F))$-ideal, an element p of the carrier of PolyRing (F), and an ordinal number m. Suppose $m \in \overline{\overline{\mathrm{nCP}(F)}}$. Then $\operatorname{eval}((\operatorname{PolyHom}(\operatorname{emb}(F, I, g)))(p), \operatorname{KrRoot}(I, m))=$ $[\operatorname{Poly}(m, p)]_{\operatorname{EqRel}(\operatorname{PolyRing}(\overline{\overline{\operatorname{nCP}(F)}}, F), I)}$.
(42) Let us consider a field F, a bijective function g from $\mathrm{nCP}(F)$ into
$\overline{\overline{\mathrm{nCP}(F)}}$, a maximal ideal I of $(\mathrm{nCP}(g, F))$-ideal, and a non constant element p of the carrier of $\operatorname{PolyRing}(F)$. Then $\operatorname{KrRoot}(I, g(p))$ is a root of $(\operatorname{PolyHom}(\operatorname{emb}(F, I, g)))(p)$. The theorem is a consequence of (41).
(43) Let us consider a field F. Then there exists an extension E_{1} of F such that for every non constant element p of the carrier of $\operatorname{PolyRing}(F), p$ has a root in E_{1}. The theorem is a consequence of (42), (39), and (40).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi 10.1007/978-3-319-20615-8_17.
[2] Grzegorz Bancerek, Czesław Bylínski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ s10817-017-9440-6
[3] Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).
[4] Piotr Rudnicki. Little Bezout theorem (factor theorem) Formalized Mathematics, 12(1): 49-58, 2004.
[5] Christoph Schwarzweller. On roots of polynomials over $F[X] /\langle p\rangle$. Formalized Mathematics, 27(2):93-100, 2019. doi 10.2478/forma-2019-0010
[6] Christoph Schwarzweller. Field extensions and Kronecker's construction. Formalized Mathematics, 27(3):229-235, 2019. doi 10.2478/forma-2019-0022

Accepted September 30, 2022

