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Summary. This is the first part of a two-part article formalizing existence
and uniqueness of algebraic closures using the Mizar system [I], [2]. Our proof
follows Artin’s classical one as presented by Lang in [3]. In this first part we
prove that for a given field F’ there exists a field extension F such that every non-
constant polynomial p € F[X] has a root in E. Artin’s proof applies Kronecker’s
construction to each polynomial p € F[X]\F simultaneously. To do so we need
the polynomial ring F[Xi, X2,...] with infinitely many variables, one for each
polynomal p € F[X]\F. The desired field extension E then is F[X1, X2,...]\I,
where I is a maximal ideal generated by all non-constant polynomials p € F[X].
Note, that to show that I is maximal Zorn’s lemma has to be applied.

In the second part this construction is iterated giving an infinite sequence
of fields, whose union establishes a field extension A of F', in which every non-
constant polynomial p € A[X] has a root. The field of algebraic elements of A
then is an algebraic closure of F'. To prove uniqueness of algebraic closures, e.g.
that two algebraic closures of F' are isomorphic over F', the technique of extending
monomorphisms is applied: a monomorphism F' — A, where A is an algebraic
closure of F' can be extended to a monomorphism E — A, where E is any
algebraic extension of F'. In case that F is algebraically closed this monomorphism
is an isomorphism. Note that the existence of the extended monomorphism again
relies on Zorn’s lemma.
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Let us consider ordinal numbers n, m and bags b1, by of n. Now we state the
propositions:

(1) If supportby = {m} and supportbe = {m}, then by < by iff by(m) <
ba(m).

(2) If support by = {m}, then bs | by iff bo = EmptyBagn or support by =
{m} and ba(m) < by(m). The theorem is a consequence of (1).

(3) Let us consider a field F', ordinal numbers m, n, and a bag b of n. Suppose
support b = {m}. Then

(i) lendivisorsb = b(m) + 1, and

(ii) for every natural number k and for every finite subset S of n such
that S = {m} and k € dom(divisors b) holds (divisorsb)(k) = (S, k'
1)-bag.

The theorem is a consequence of (1) and (2).

Let n be an ordinal number and L be a right zeroed, add-associative, ri-
ght complementable, right unital, distributive, non degenerated double loop
structure. Let us note that PolyRing(n, L) is non degenerated.

Now we state the proposition:

(4) Let us consider a non degenerated commutative ring R, a commutative

ring extension S of R, and an ordinal number n. Then PolyRing(n, S) is
a commutative ring extension of PolyRing(n, R).
PRrROOF: Every polynomial of n,R is a polynomial of n,S. The carrier of
PolyRing(n, R) C the carrier of PolyRing(n,S). For every polynomials p,
q of n,R and for every polynomials p1, g1 of n,S such that p = p; and ¢ = ¢4
holds p+ g = p1 + ¢1. The addition of PolyRing(n, R) = (the addition of
PolyRing(n, S)) | (the carrier of PolyRing(n, R)). For every polynomials
p, ¢ of n,R and for every polynomials p1, ¢1 of n,S such that p = p;
and ¢ = ¢ holds p *x ¢ = p1 * ¢1. The multiplication of PolyRing(n, R) =
(the multiplication of PolyRing(n,S)) | (the carrier of PolyRing(n, R)).
O

Let R be a non degenerated ring, n be an ordinal number, and p be a poly-
nomial of n,R. The functor Leading-Term(p) yielding a bag of n is defined by
the term

(SgmX (BagOrder n, Support p))(len SgmX (BagOrder n, Support p)),
(Def. 1) if p # 0, R,
EmptyBagn, otherwise.
The leading coeflicient of p yielding an element of R is defined by the term

(Def. 2) p(Leading-Term(p)).
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The functor Leading-Monomial p yielding a monomial of n,R is defined by
the term
(Def. 3) Monom(the leading coefficient of p, Leading-Term(p)).
We introduce the notation LCp as a synonym of the leading coefficient

of p and LT p as a synonym of Leading-Term(p) and LM(p) as a synonym of
Leading-Monomial p.

Let us consider a non degenerated ring R, an ordinal number n, and a po-
lynomial p of n,R. Now we state the propositions:

(5) p=0,R if and only if Support p = (.
(6) LCp=0g if and only if p = 0,,R. The theorem is a consequence of (5).

(7) Let us consider a non degenerated ring R, an ordinal number n, a poly-
nomial p of n,R, and a bag b of n. Suppose b € Support p. Then b = LT p
if and only if for every bag b; of n such that by € Support p holds by < b.
The theorem is a consequence of (5).

(8) Let us consider a non degenerated ring R, an ordinal number n, and
a polynomial p of n,R. Then Support LM(p) C Support p.

(9) Let us consider a field F, an ordinal number n, and a monomial p of
n,F. Then
(i) LCp = coefficient p, and
(ii) LT p = termp.
The theorem is a consequence of (5).
Let us consider a non degenerated ring R, an ordinal number n, and a po-
lynomial p of n,R. Now we state the propositions:
(10) (i) Support LM(p) =0, or
(ii) Support LM(p) = {LT p}.
The theorem is a consequence of (5), (8), and (6).

(11) LM(p) = 0, R if and only if p = 0,,R. The theorem is a consequence of
(5), (8), and (6).

(12) (i) (LM(p))(LTp) = LCp, and
(ii) for every bag b of n such that b # LT p holds (LM(p))(b) = Og.
(13) (i) LTLM(p) = LT p, and

(i) LCLM(p) = LCp.
Let us consider an ordinal number n, a non degenerated ring R, and elements
a, b of R. Now we state the propositions:

(14) (al(n, R)) + (bl(n, R)) = a+bl(n, R).
(15) (al(n, R)) * (bI(n, R)) = a - b[(n, R).
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Let R, S be non degenerated commutative rings, n be an ordinal number,
p be a polynomial of n,R, and x be a function from n into S. The functor
ExtEval(p, z) yielding an element of S is defined by

(Def. 4) there exists a finite sequence y of elements of S such that it = )"y and
leny = len SgmX(BagOrder n, Support p) and for every element i of N such
that 1 < i < leny holds y(i) = (p - (SgmX(BagOrder n, Support p)))(i)(€
S) - (eval((SgmX(BagOrder n, Support p)) /;, 7))

Let us consider non degenerated commutative rings R, .S, an ordinal number
n, and a function z from n into S. Now we state the propositions:
(16) ExtEval(0,R,z) = 0g. The theorem is a consequence of (5).
(17) If R is a subring of S, then ExtEval(1-(n, R),x) = 1g.
(18) Let us consider non degenerated commutative rings R, S, an ordinal
number n, a polynomial p of n,R, and a bag b of n. Suppose Support p =
{b}. Let us consider a function x from n into S. Then ExtEval(p,z) =
p(b)(€ S) - (eval(b, x)).
PROOF: Reconsider s = Support p as a finite subset of Bagsn. Set s; =
SgmX (BagOrder n, s3). For every object u such that u € dom s; holds u €
{1}. Consider y being a finite sequence of elements of the carrier of S such
that ExtEval(p,z) = >y and leny = len SgmX(BagOrder n, Support p)
and for every element i of N such that 1 < ¢ < leny holds y(i) = (p -
(SgmX(BagOrdern, s2)))(i)(€ S) - (eval((SgmX(BagOrdern, s2)) /;, z)). O
Let us consider non degenerated commutative rings R, S, an ordinal number
n, polynomials p, ¢ of n,R, and a function x from n into S. Now we state the
propositions:
(19) If R is a subring of S, then ExtEval(p + ¢, z) =
ExtEval(p, x) + ExtEval(q, z).
PROOF: Define P[natural number| = for every polynomial p of n,R such
that Support p = $; holds ExtEval(p+q, x) = ExtEval(p, z)+ExtEval(q, x).
For every natural number k such that P[k] holds P[k + 1]. P[0]. For every
natural number k, P[k]. O
(20) If R is a subring of S, then ExtEval(p x ¢, x) =
(ExtEval(p, z)) - (ExtEval(q, z)).
PROOF: Define P[natural number| = for every polynomial p of n,R such
that Support p = $; holds ExtEval(pxq, z) = (ExtEval(p, x)) - (ExtEval(q,
x)). For every natural number k such that P[k] holds P[k + 1]. P[0]. For
every natural number k, P[k]. O
Let F be a field. The functor nCP(F') yielding a non empty subset of the car-
rier of PolyRing(F') is defined by the term
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(Def. 5) the set of all p where p is a non constant element of the carrier of
PolyRing(F).

One can verify that nCP(F") is non empty and there exists a function from

nCP(F') into nCP(F) which is bijective.

Let g be a function from nCP(F') into nCP(F) and p be a non constant
element of the carrier of PolyRing(F'). Observe that the functor g(p) yields
an ordinal number. Let m be an ordinal number and p be a polynomial over F.

The functor Poly(m, p) yielding a polynomial of nCP(F'),F is defined by

(Def. 6) it(EmptyBag nCP(F")) = p(0) and for every bag b of nCP(F') such that

support b = {m} holds it(b) = p(b(m)) and for every bag b of nCP(F)
such that support b # () and support b # {m} holds it(b) = Op.

Let g be a bijective function from nCP(F') into nCP(F'). The functor nCP(g,

F) yielding a non empty subset of PolyRing(nCP(F'), F) is defined by the
term

(Def. 7) the set of all Poly(g(p), p) where p is a non constant element of the carrier
of PolyRing(F).
Let m be an ordinal number and p be a polynomial over F. Observe that
Poly(m, LM(p)) is monomial-like. Now we state the propositions:

(21) Let us consider a field F', and an ordinal number m. Suppose m €

nCP(F). Let us consider a polynomial p over F. Then Poly(m,p) =
F' if and only if p = 0.F. The theorem is a consequence of (5).

OnCP(F)
(22) Let us consider a field F', and an ordinal number m. Suppose m €

nCP(F). Let us consider a polynomial p over F', and an element a of

F'. Then Poly(m,p) = a[(nCP(F), F) if and only if p = alF.
(23) Let us consider a field F, and an ordinal number m. Suppose m €

nCP(F'). Let us consider a non zero element p of the carrier of PolyRing(F").
Then Support Poly(m, p) = {EmptyBag nCP(F)} if and only if p is con-
stant. The theorem is a consequence of (22) and (21).

(24) Let us consider a field F', and ordinal numbers mq, ms. Suppose myq,
mag € nCT(F) Let us consider non constant polynomials p;, ps over F.
Suppose Poly(m1,p1) = Poly(ms, p2). Then

(i) m1 = me, and
(ii) p1 = p2.
The theorem is a consequence of (21), (23), and (5).
(25) Let us consider a field F, and an ordinal number m. Suppose m €

nCP(F). Let us consider a constant polynomial p over F. Then
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(i) LT Poly(m,p) = EmptyBag nCP(F'), and
(i) LC Poly(m, p) = p(0).
The theorem is a consequence of (22).
(26) Let us consider a field F', and an ordinal number m. Suppose m €

nCP(F'). Let us consider a non constant polynomial p over F'. Then
(i) (LT Poly(m,p))(m) = deg(p), and

(ii) for every ordinal number o such that o # m holds
(LT Poly(m, p))(0) = 0.

PRrROOF: Set n = nCP(F'). Set ¢ = Poly(m,p). Reconsider S = {m}
as a finite subset of n. Reconsider d = deg(p) as a non zero element of
N. Set b = (S,d)-bag. b € Supportq. For every bag b; of n such that
b1 € Support g holds by < b by [4, (7),(6)]. b=LTgq. O
Let us consider a field F', an ordinal number m, and a polynomial p over F.
Now we state the propositions:

(27) Suppose m € nCP(F'). Then
(i) LCPoly(m,LM(p)) = LC Poly(m,p), and
(ii) LT Poly(m,LM(p)) = LT Poly(m, p).

The theorem is a consequence of (25) and (26).

(28) Suppose m € nCP(F'). Then Poly(m, LM(p)) = Monom(LC Poly(m, p),
LT Poly(m, p)). The theorem is a consequence of (9) and (27).

(29) If m € nCP(F'), then LM(Poly(m, p)) = Poly(m, LM(p)).

(30) Let us consider a field F, an ordinal number m, and polynomials p, ¢
over F'. Then Poly(m,p + q) = Poly(m, p) + Poly(m, q).

(31) Let us consider a field F', an ordinal number m, and a polynomial p over
F'. Then Poly(m,—p) = —Poly(m, p).

(32) Let us consider a field F', a non zero element a of F', a natural number 7,
and an ordinal number m. Suppose m € nCP(F'). Then Poly(m, anpoly(a,
0))*Poly(m, anpoly(1r,i)) = Poly(m, anpoly(a,:)). The theorem is a con-
sequence of (22).

(33) Let us consider a field F, an element ¢ of N, and an ordinal number m.
Suppose m € nCP(F'). Then Poly(m, anpoly(1p, 1)) * Poly(m, anpoly(1p,
i)) = Poly(m,anpoly(1p,i + 1)). The theorem is a consequence of (22)
and (3).

(34) Let us consider a field F', a natural number ¢, and an ordinal number m.

Suppose m € nCP(F'). Then powerPOIyRing(W(F)yF) (Poly(m, anpoly(1p,
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1)),4) = Poly(m, anpoly(1r,1)).
PROOF: Set f = powerPOlyRing(nCP(F)vF)
f(Poly(m, anpoly(1r,1)),$1) = Poly(m, anpoly(1r,$1)). P[0] by [5, (7)],
(22). For every natural number k, Plk]. O

(35) Let us consider a field F', a non constant element p of the carrier of

. Define P[natural number] =

PolyRing(F'), and an ordinal number m. Suppose m € nCP(F'). Then
Poly(m, anpoly(LC p, deg(p))) = LM(Poly(m, p)). The theorem is a con-
sequence of (28).

(36) Let us consider a field F', and a finite subset P of the carrier of PolyRing

(F). Then there exists an extension F of F' such that for every non constant
element p of the carrier of PolyRing(F') such that p € P holds p has a root
in b.
PROOF: Define P[natural number] = for every field F' for every finite
subset P of the carrier of PolyRing(F) such that P = $; there exists
an extension F of F' such that for every non constant element p of the car-
rier of PolyRing(F') such that p € P holds p has a root in E. P[0] by [6),
(6)]. For every natural number k, P[k]. Consider n being a natural number
such that P = n. [J

(37) Let us consider a field F, an extension E of F, and an ordinal num-
ber m. Suppose m € nCP(F). Let us consider a polynomial p over F,

and a function z from nCP(F) into E. Then ExtEval(Poly(m,p),z) =
ExtEval(p, x )

PROOF: Set ¢ = Poly(m, p). Set n = nCP(F’). Define P[natural number| =
for every polynomial p over F for every function = from n into F such that

Support Poly(m, p) = $1 holds ExtEval(Poly(m, p), z) = ExtEval(p, z /).
For every natural number k, P[k]. Consider n being a natural number such

that Supportq =n.
(38) Let us consider a non degenerated commutative ring R, a non empty
subset M of R, and an object 0. Then o € M—ideal if and only if there exi-

sts a non empty, finite subset P of R and there exists a linear combination
L of P such that PC M and o= > L.

Let F' be a field and g be a bijective function from nCP(F) into nCP(F).
Let us observe that (nCP(g, F))-ideal is proper.
Let R be a non degenerated, commutative ring and I be a proper ideal of
R.
A maximal ideal of I is an ideal of R defined by
(Def. 8) I C it and it is maximal.

Observe that every maximal ideal of I is maximal.
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Let F be a field, g be a bijective function from nCP(F') into nCP(F'), and
I be a maximal ideal of (nCP(g, F'))—ideal. The functor KroneckerField(F, g, I)
yielding a field is defined by the term

PolyRing(nCP(F),F
(Def. 9) y g(l (F).F)

Let n be an ordinal number and R be a non degenerated ring. The functor
Tp—n/r yielding a function from R into PolyRing(n, R) is defined by

(Def. 10) for every element a of R, it(a) = al(n, R).

Let R be a non degenerated commutative ring. One can check that m,_,/r
is additive, multiplicative, and unity-preserving and m,_, /g is monomorphic.

Let F be a field, g be a bijective function from nCP(F') into nCP(F'), and
I be a maximal ideal of (nCP(g, F'))-ideal. The functor emb(F,I,g) yielding
a function from F into KroneckerField(F, g, ) is defined by the term

(Def. 11)  (the canonical homomorphism of I into quotient field)-

(TrnCP(F) —nCP(F) /F)'

Note that emb(F, I, g) is additive, multiplicative, and unity-preserving and
emb(F, I, g) is monomorphic and KroneckerField(F, g, I') is F-monomorphic and
F-homomorphic.

Let m be an ordinal number. The functor KrRoot(/, m) yielding an element
of KroneckerField(F, g, I) is defined by the term

(Def. 12)  [Poly(m, (0, 15))]

EqRel(PolyRing(nCP(F),F),I)
Now we state the propositions:

(39) Let us consider a field F', a bijective function ¢ from nCP(F') into

nCP(F), a maximal ideal I of (nCP(g, F'))-ideal, and an element a of

F. Then (emb(F,1,g))(a) = [a[(nCP(F),F)]EqRel(PolyRing(nCP(F) D
(40) Let us consider a field F', a bijective function ¢ from nCP(F') into

nCP(F'), a maximal ideal I of (nCP(g, F'))-ideal, an element p of the car-
rier of PolyRing(F'), and an element n of N. Then (PolyHom(emb(F, I, g)))

(p)(n) = [p(n) [ (nCP(F), F)]EqRel(PolyRing(ncp(F),F),I)'
The theorem is a consequence of (39).
(41) Let us consider a field F', a bijective function ¢ from nCP(F') into

nCP(F'), a maximal ideal I of (nCP(g, F'))-ideal, an element p of the car-

rier of PolyRing(#"), and an ordinal number m. Suppose m € nCP(F).
Then eval((PolyHom(emb(F, I, g)))(p), KrRoot(I,m)) =

[Poly(m. p )]EqRel(PolyRing(nCP(F) ),
(42) Let us consider a field F', a bijective function ¢ from nCP(F') into
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nCP(F'), a maximal ideal I of (nCP(g, F'))-ideal, and a non constant
element p of the carrier of PolyRing(F'). Then KrRoot(I, g(p)) is a root
of (PolyHom(emb(F,I,g)))(p). The theorem is a consequence of (41).

(43) Let us consider a field F. Then there exists an extension Fj of F' such

(1]

that for every non constant element p of the carrier of PolyRing(F'), p has
a root in F. The theorem is a consequence of (42), (39), and (40).

REFERENCES

Grzegorz Bancerek, Czestaw Byliriski, Adam Grabowski, Artur Kornitowicz, Roman Ma-
tuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and
beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Vol-
ker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in
Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-
319-20614-1. doi:10.1007/978-3-319-20615-8_17.

Grzegorz Bancerek, Czestaw Bylinski, Adam Grabowski, Artur Kornitowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9-32,
2018. doii10.1007/s10817-017-9440-6.

Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).

Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):
49-58, 2004.

Christoph Schwarzweller. On roots of polynomials over F[X]/(p). Formalized Mathematics,
27(2):93-100, 2019. doii10.2478/forma-2019-0010.

Christoph Schwarzweller. Field extensions and Kronecker’s construction. Formalized Ma-
thematics, 27(3):229-235, 2019. doii10.2478 /forma-2019-0022.

Accepted September 30, 2022

207


http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
http://dx.doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://fm.mizar.org/2004-12/pdf12-1/uproots.pdf
http://dx.doi.org/10.2478/forma-2019-0010
http://dx.doi.org/10.2478/forma-2019-0022

	=0pt Artin's Theorem Towards the Existence of Algebraic Closures  By Christoph Schwarzweller  

