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Summary. This is the first part of a two-part article formalizing existence
and uniqueness of algebraic closures using the Mizar system [1], [2]. Our proof
follows Artin’s classical one as presented by Lang in [3]. In this first part we
prove that for a given field F there exists a field extension E such that every non-
constant polynomial p ∈ F [X] has a root in E. Artin’s proof applies Kronecker’s
construction to each polynomial p ∈ F [X]\F simultaneously. To do so we need
the polynomial ring F [X1, X2, ...] with infinitely many variables, one for each
polynomal p ∈ F [X]\F . The desired field extension E then is F [X1, X2, ...]\I,
where I is a maximal ideal generated by all non-constant polynomials p ∈ F [X].
Note, that to show that I is maximal Zorn’s lemma has to be applied.

In the second part this construction is iterated giving an infinite sequence
of fields, whose union establishes a field extension A of F , in which every non-
constant polynomial p ∈ A[X] has a root. The field of algebraic elements of A
then is an algebraic closure of F . To prove uniqueness of algebraic closures, e.g.
that two algebraic closures of F are isomorphic over F , the technique of extending
monomorphisms is applied: a monomorphism F −→ A, where A is an algebraic
closure of F can be extended to a monomorphism E −→ A, where E is any
algebraic extension of F . In case that E is algebraically closed this monomorphism
is an isomorphism. Note that the existence of the extended monomorphism again
relies on Zorn’s lemma.
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Let us consider ordinal numbers n, m and bags b1, b2 of n. Now we state the
propositions:

(1) If support b1 = {m} and support b2 = {m}, then b1 ¬ b2 iff b1(m) ¬
b2(m).

(2) If support b1 = {m}, then b2 | b1 iff b2 = EmptyBagn or support b2 =
{m} and b2(m) ¬ b1(m). The theorem is a consequence of (1).

(3) Let us consider a field F , ordinal numbers m, n, and a bag b of n. Suppose
support b = {m}. Then

(i) len divisors b = b(m) + 1, and

(ii) for every natural number k and for every finite subset S of n such
that S = {m} and k ∈ dom(divisors b) holds (divisors b)(k) = (S, k−′
1) -bag.

The theorem is a consequence of (1) and (2).

Let n be an ordinal number and L be a right zeroed, add-associative, ri-
ght complementable, right unital, distributive, non degenerated double loop
structure. Let us note that PolyRing(n,L) is non degenerated.

Now we state the proposition:

(4) Let us consider a non degenerated commutative ring R, a commutative
ring extension S of R, and an ordinal number n. Then PolyRing(n, S) is
a commutative ring extension of PolyRing(n,R).
Proof: Every polynomial of n,R is a polynomial of n,S. The carrier of
PolyRing(n,R) ⊆ the carrier of PolyRing(n, S). For every polynomials p,
q of n,R and for every polynomials p1, q1 of n,S such that p = p1 and q = q1
holds p+ q = p1+ q1. The addition of PolyRing(n,R) = (the addition of
PolyRing(n, S)) � (the carrier of PolyRing(n,R)). For every polynomials
p, q of n,R and for every polynomials p1, q1 of n,S such that p = p1
and q = q1 holds p ∗ q = p1 ∗ q1. The multiplication of PolyRing(n,R) =
(the multiplication of PolyRing(n, S)) � (the carrier of PolyRing(n,R)).
�

Let R be a non degenerated ring, n be an ordinal number, and p be a poly-
nomial of n,R. The functor Leading-Term(p) yielding a bag of n is defined by
the term

(Def. 1)


(SgmX(BagOrdern,Support p))(len SgmX(BagOrdern, Support p)),
if p 6= 0nR,

EmptyBag n,otherwise.
The leading coefficient of p yielding an element of R is defined by the term

(Def. 2) p(Leading-Term(p)).
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The functor Leading-Monomial p yielding a monomial of n,R is defined by
the term

(Def. 3) Monom(the leading coefficient of p,Leading-Term(p)).

We introduce the notation LC p as a synonym of the leading coefficient
of p and LT p as a synonym of Leading-Term(p) and LM(p) as a synonym of
Leading-Monomial p.

Let us consider a non degenerated ring R, an ordinal number n, and a po-
lynomial p of n,R. Now we state the propositions:

(5) p = 0nR if and only if Support p = ∅.
(6) LC p = 0R if and only if p = 0nR. The theorem is a consequence of (5).

(7) Let us consider a non degenerated ring R, an ordinal number n, a poly-
nomial p of n,R, and a bag b of n. Suppose b ∈ Support p. Then b = LT p

if and only if for every bag b1 of n such that b1 ∈ Support p holds b1 ¬ b.
The theorem is a consequence of (5).

(8) Let us consider a non degenerated ring R, an ordinal number n, and
a polynomial p of n,R. Then Support LM(p) ⊆ Support p.

(9) Let us consider a field F , an ordinal number n, and a monomial p of
n,F . Then

(i) LC p = coefficient p, and

(ii) LT p = term p.

The theorem is a consequence of (5).

Let us consider a non degenerated ring R, an ordinal number n, and a po-
lynomial p of n,R. Now we state the propositions:

(10) (i) Support LM(p) = ∅, or

(ii) Support LM(p) = {LT p}.
The theorem is a consequence of (5), (8), and (6).

(11) LM(p) = 0nR if and only if p = 0nR. The theorem is a consequence of
(5), (8), and (6).

(12) (i) (LM(p))(LT p) = LC p, and

(ii) for every bag b of n such that b 6= LT p holds (LM(p))(b) = 0R.

(13) (i) LT LM(p) = LT p, and

(ii) LC LM(p) = LC p.

Let us consider an ordinal number n, a non degenerated ring R, and elements
a, b of R. Now we state the propositions:

(14) (a�(n,R)) + (b�(n,R)) = a+ b�(n,R).

(15) (a�(n,R)) ∗ (b�(n,R)) = a · b�(n,R).
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Let R, S be non degenerated commutative rings, n be an ordinal number,
p be a polynomial of n,R, and x be a function from n into S. The functor
ExtEval(p, x) yielding an element of S is defined by

(Def. 4) there exists a finite sequence y of elements of S such that it =
∑
y and

len y = len SgmX(BagOrdern, Support p) and for every element i of N such
that 1 ¬ i ¬ len y holds y(i) = (p · (SgmX(BagOrdern, Support p)))(i)(∈
S) · (eval((SgmX(BagOrdern, Support p))/i, x)).

Let us consider non degenerated commutative rings R, S, an ordinal number
n, and a function x from n into S. Now we state the propositions:

(16) ExtEval(0nR, x) = 0S . The theorem is a consequence of (5).

(17) If R is a subring of S, then ExtEval(1 (n,R), x) = 1S .

(18) Let us consider non degenerated commutative rings R, S, an ordinal
number n, a polynomial p of n,R, and a bag b of n. Suppose Support p =
{b}. Let us consider a function x from n into S. Then ExtEval(p, x) =
p(b)(∈ S) · (eval(b, x)).
Proof: Reconsider s2 = Support p as a finite subset of Bagsn. Set s1 =
SgmX(BagOrdern, s2). For every object u such that u ∈ dom s1 holds u ∈
{1}. Consider y being a finite sequence of elements of the carrier of S such
that ExtEval(p, x) =

∑
y and len y = len SgmX(BagOrdern, Support p)

and for every element i of N such that 1 ¬ i ¬ len y holds y(i) = (p ·
(SgmX(BagOrdern, s2)))(i)(∈ S) · (eval((SgmX(BagOrdern, s2))/i, x)). �

Let us consider non degenerated commutative rings R, S, an ordinal number
n, polynomials p, q of n,R, and a function x from n into S. Now we state the
propositions:

(19) If R is a subring of S, then ExtEval(p+ q, x) =
ExtEval(p, x) + ExtEval(q, x).
Proof: Define P[natural number] ≡ for every polynomial p of n,R such
that Support p = $1 holds ExtEval(p+q, x) = ExtEval(p, x)+ExtEval(q, x).
For every natural number k such that P[k] holds P[k+ 1]. P[0]. For every
natural number k, P[k]. �

(20) If R is a subring of S, then ExtEval(p ∗ q, x) =
(ExtEval(p, x)) · (ExtEval(q, x)).
Proof: Define P[natural number] ≡ for every polynomial p of n,R such
that Support p = $1 holds ExtEval(p∗q, x) = (ExtEval(p, x)) ·(ExtEval(q,
x)). For every natural number k such that P[k] holds P[k + 1]. P[0]. For
every natural number k, P[k]. �

Let F be a field. The functor nCP(F ) yielding a non empty subset of the car-
rier of PolyRing(F ) is defined by the term
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(Def. 5) the set of all p where p is a non constant element of the carrier of
PolyRing(F ).

One can verify that nCP(F ) is non empty and there exists a function from

nCP(F ) into nCP(F ) which is bijective.

Let g be a function from nCP(F ) into nCP(F ) and p be a non constant
element of the carrier of PolyRing(F ). Observe that the functor g(p) yields
an ordinal number. Let m be an ordinal number and p be a polynomial over F .
The functor Poly(m, p) yielding a polynomial of nCP(F ),F is defined by

(Def. 6) it(EmptyBag nCP(F )) = p(0) and for every bag b of nCP(F ) such that

support b = {m} holds it(b) = p(b(m)) and for every bag b of nCP(F )
such that support b 6= ∅ and support b 6= {m} holds it(b) = 0F .

Let g be a bijective function from nCP(F ) into nCP(F ). The functor nCP(g,

F ) yielding a non empty subset of PolyRing(nCP(F ) , F ) is defined by the
term

(Def. 7) the set of all Poly(g(p), p) where p is a non constant element of the carrier
of PolyRing(F ).

Let m be an ordinal number and p be a polynomial over F . Observe that
Poly(m,LM(p)) is monomial-like. Now we state the propositions:

(21) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a polynomial p over F . Then Poly(m, p) =
0
nCP(F )

F if and only if p = 0.F . The theorem is a consequence of (5).

(22) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a polynomial p over F , and an element a of

F . Then Poly(m, p) = a�(nCP(F ) , F ) if and only if p = a�F .

(23) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a non zero element p of the carrier of PolyRing(F ).

Then Support Poly(m, p) = {EmptyBag nCP(F )} if and only if p is con-
stant. The theorem is a consequence of (22) and (21).

(24) Let us consider a field F , and ordinal numbers m1, m2. Suppose m1,

m2 ∈ nCP(F ). Let us consider non constant polynomials p1, p2 over F .
Suppose Poly(m1, p1) = Poly(m2, p2). Then

(i) m1 = m2, and

(ii) p1 = p2.

The theorem is a consequence of (21), (23), and (5).

(25) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a constant polynomial p over F . Then
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(i) LT Poly(m, p) = EmptyBag nCP(F ), and

(ii) LC Poly(m, p) = p(0).

The theorem is a consequence of (22).

(26) Let us consider a field F , and an ordinal number m. Suppose m ∈
nCP(F ). Let us consider a non constant polynomial p over F . Then

(i) (LT Poly(m, p))(m) = deg(p), and

(ii) for every ordinal number o such that o 6= m holds

(LT Poly(m, p))(o) = 0.

Proof: Set n = nCP(F ). Set q = Poly(m, p). Reconsider S = {m}
as a finite subset of n. Reconsider d = deg(p) as a non zero element of
N. Set b = (S, d) -bag. b ∈ Support q. For every bag b1 of n such that
b1 ∈ Support q holds b1 ¬ b by [4, (7),(6)]. b = LT q. �

Let us consider a field F , an ordinal number m, and a polynomial p over F .
Now we state the propositions:

(27) Suppose m ∈ nCP(F ). Then

(i) LC Poly(m,LM(p)) = LC Poly(m, p), and

(ii) LT Poly(m,LM(p)) = LT Poly(m, p).

The theorem is a consequence of (25) and (26).

(28) Suppose m ∈ nCP(F ). Then Poly(m,LM(p)) = Monom(LC Poly(m, p),
LT Poly(m, p)). The theorem is a consequence of (9) and (27).

(29) If m ∈ nCP(F ), then LM(Poly(m, p)) = Poly(m,LM(p)).

(30) Let us consider a field F , an ordinal number m, and polynomials p, q
over F . Then Poly(m, p+ q) = Poly(m, p) + Poly(m, q).

(31) Let us consider a field F , an ordinal number m, and a polynomial p over
F . Then Poly(m,−p) = −Poly(m, p).

(32) Let us consider a field F , a non zero element a of F , a natural number i,

and an ordinal number m. Suppose m ∈ nCP(F ). Then Poly(m, anpoly(a,
0))∗Poly(m, anpoly(1F , i)) = Poly(m, anpoly(a, i)). The theorem is a con-
sequence of (22).

(33) Let us consider a field F , an element i of N, and an ordinal number m.

Suppose m ∈ nCP(F ). Then Poly(m, anpoly(1F , 1)) ∗Poly(m, anpoly(1F ,
i)) = Poly(m, anpoly(1F , i + 1)). The theorem is a consequence of (22)
and (3).

(34) Let us consider a field F , a natural number i, and an ordinal number m.

Suppose m ∈ nCP(F ). Then power
PolyRing(nCP(F ) ,F )

(Poly(m, anpoly(1F ,
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1)), i) = Poly(m, anpoly(1F , i)).
Proof: Set f = power

PolyRing(nCP(F ) ,F )
. Define P[natural number] ≡

f(Poly(m, anpoly(1F , 1)), $1) = Poly(m, anpoly(1F , $1)). P[0] by [5, (7)],
(22). For every natural number k, P[k]. �

(35) Let us consider a field F , a non constant element p of the carrier of

PolyRing(F ), and an ordinal number m. Suppose m ∈ nCP(F ). Then
Poly(m, anpoly(LC p,deg(p))) = LM(Poly(m, p)). The theorem is a con-
sequence of (28).

(36) Let us consider a field F , and a finite subset P of the carrier of PolyRing
(F ). Then there exists an extension E of F such that for every non constant
element p of the carrier of PolyRing(F ) such that p ∈ P holds p has a root
in E.
Proof: Define P[natural number] ≡ for every field F for every finite
subset P of the carrier of PolyRing(F ) such that P = $1 there exists
an extension E of F such that for every non constant element p of the car-
rier of PolyRing(F ) such that p ∈ P holds p has a root in E. P[0] by [6,
(6)]. For every natural number k, P[k]. Consider n being a natural number
such that P = n. �

(37) Let us consider a field F , an extension E of F , and an ordinal num-

ber m. Suppose m ∈ nCP(F ). Let us consider a polynomial p over F ,

and a function x from nCP(F ) into E. Then ExtEval(Poly(m, p), x) =
ExtEval(p, x/m).

Proof: Set q = Poly(m, p). Set n = nCP(F ). Define P[natural number] ≡
for every polynomial p over F for every function x from n into E such that
Support Poly(m, p) = $1 holds ExtEval(Poly(m, p), x) = ExtEval(p, x/m).
For every natural number k, P[k]. Consider n being a natural number such
that Support q = n. �

(38) Let us consider a non degenerated commutative ring R, a non empty
subset M of R, and an object o. Then o ∈M–ideal if and only if there exi-
sts a non empty, finite subset P of R and there exists a linear combination
L of P such that P ⊆M and o =

∑
L.

Let F be a field and g be a bijective function from nCP(F ) into nCP(F ).
Let us observe that (nCP(g, F ))–ideal is proper.

Let R be a non degenerated, commutative ring and I be a proper ideal of
R.

A maximal ideal of I is an ideal of R defined by

(Def. 8) I ⊆ it and it is maximal.

Observe that every maximal ideal of I is maximal.
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Let F be a field, g be a bijective function from nCP(F ) into nCP(F ), and
I be a maximal ideal of (nCP(g, F ))–ideal. The functor KroneckerField(F, g, I)
yielding a field is defined by the term

(Def. 9) PolyRing(nCP(F ) ,F )
I .

Let n be an ordinal number and R be a non degenerated ring. The functor
πn→n/R yielding a function from R into PolyRing(n,R) is defined by

(Def. 10) for every element a of R, it(a) = a�(n,R).

Let R be a non degenerated commutative ring. One can check that πn→n/R
is additive, multiplicative, and unity-preserving and πn→n/R is monomorphic.

Let F be a field, g be a bijective function from nCP(F ) into nCP(F ), and
I be a maximal ideal of (nCP(g, F ))–ideal. The functor emb(F, I, g) yielding
a function from F into KroneckerField(F, g, I) is defined by the term

(Def. 11) (the canonical homomorphism of I into quotient field)·
(π
nCP(F )→nCP(F )/F

).

Note that emb(F, I, g) is additive, multiplicative, and unity-preserving and
emb(F, I, g) is monomorphic and KroneckerField(F, g, I) is F -monomorphic and
F -homomorphic.

Let m be an ordinal number. The functor KrRoot(I,m) yielding an element
of KroneckerField(F, g, I) is defined by the term

(Def. 12) [Poly(m, 〈0F , 1F 〉)]EqRel(PolyRing(nCP(F ) ,F ),I).

Now we state the propositions:

(39) Let us consider a field F , a bijective function g from nCP(F ) into

nCP(F ), a maximal ideal I of (nCP(g, F ))–ideal, and an element a of

F . Then (emb(F, I, g))(a) = [a�(nCP(F ) , F )]
EqRel(PolyRing(nCP(F ) ,F ),I)

.

(40) Let us consider a field F , a bijective function g from nCP(F ) into

nCP(F ), a maximal ideal I of (nCP(g, F ))–ideal, an element p of the car-
rier of PolyRing(F ), and an element n of N. Then (PolyHom(emb(F, I, g)))

(p)(n) = [p(n)�(nCP(F ) , F )]
EqRel(PolyRing(nCP(F ) ,F ),I)

.

The theorem is a consequence of (39).

(41) Let us consider a field F , a bijective function g from nCP(F ) into

nCP(F ), a maximal ideal I of (nCP(g, F ))–ideal, an element p of the car-

rier of PolyRing(F ), and an ordinal number m. Suppose m ∈ nCP(F ).
Then eval((PolyHom(emb(F, I, g)))(p),KrRoot(I,m)) =
[Poly(m, p)]

EqRel(PolyRing(nCP(F ) ,F ),I)
.

(42) Let us consider a field F , a bijective function g from nCP(F ) into



Artin’s theorem towards the existence of algebraic ... 207

nCP(F ), a maximal ideal I of (nCP(g, F ))–ideal, and a non constant
element p of the carrier of PolyRing(F ). Then KrRoot(I, g(p)) is a root
of (PolyHom(emb(F, I, g)))(p). The theorem is a consequence of (41).

(43) Let us consider a field F . Then there exists an extension E1 of F such
that for every non constant element p of the carrier of PolyRing(F ), p has
a root in E1. The theorem is a consequence of (42), (39), and (40).
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