REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/14247
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorCoghetto, Roland-
dc.date.accessioned2022-12-29T11:44:01Z-
dc.date.available2022-12-29T11:44:01Z-
dc.date.issued2022-
dc.identifier.citationFormalized Mathematics, Volume 30, Issue 1, Pages 53-66pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/14247-
dc.description.abstractUniverse is a concept which is present from the beginning of the creation of the Mizar Mathematical Library (MML) in several forms (Universe, Universe_closure, UNIVERSE) [25], then later as the_universe_of, [33], and recently with the definition GrothendieckUniverse [26], [11], [11]. These definitions are useful in many articles [28, 33, 8, 35], [19, 32, 31, 15, 6], but also [34, 12, 20, 22, 21], [27, 2, 3, 23, 16, 7, 4, 5]. In this paper, using the Mizar system [9] [10], we trivially show that Grothendieck’s definition of Universe as defined in [26], coincides with the original definition of Universe defined by Artin, Grothendieck, and Verdier (Chapitre 0 Univers et Appendice “Univers” (par N. Bourbaki) de l’Exposé I. “PREFAISCEAUX”) [1], and how the different definitions of MML concerning universes are related. We also show that the definition of Universe introduced by Mac Lane ([18]) is compatible with the MML’s definition. Although a universe may be empty, we consider the properties of non-empty universes, completing the properties proved in [25]. We introduce the notion of “trivial” and “non-trivial” Universes, depending on whether or not they contain the set ω (NAT), following the notion of Robert M. Solovay. The following result links the universes U₀ (FinSETS) and U₁ (SETS): GrothendieckUniverse ω = GrothendieckUniverse U₀ = U₁ . Before turning to the last section, we establish some trivial propositions allowing the construction of sets outside the considered universe. The last section is devoted to the construction, in Tarski-Grothendieck, of a tower of universes indexed by the ordinal numbers (See 8. Examples, Grothendieck universe, ncatlab.org [24]). Grothendieck’s universe is referenced in current works: “Assuming the existence of a sufficient supply of (Grothendieck) univers”, Jacob Lurie in “Higher Topos Theory” [17], “Annexe B – Some results on Grothendieck universes”, Olivia Caramello and Riccardo Zanfa in “Relative topos theory via stacks” [13], “Remark 1.1.5 (quoting Michael Shulman [30])”, Emily Riehl in “Category the ory in Context” [29], and more specifically “Strict Universes for Grothendieck Topoi” [14].pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectTarski-Grothendieck set theorypl
dc.subjectGrothendieck universepl
dc.subjectuniverse hierarchypl
dc.titleNon-Trivial Universes and Sequences of Universespl
dc.typeArticlepl
dc.rights.holder© 2022 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2022-0005-
dc.description.AffiliationRoland Coghetto - cafr-MSA2P asbl, Rue de la Brasserie 5, 7100 La Louvi`ere, Belgiumpl
dc.description.referencesM. Artin, A. Grothendieck, and J.L. Verdier. Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos (exposés i à iv). Séminaire de Géométrie Algébrique du Bois Marie, Vol.1964.pl
dc.description.referencesGrzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711–714, 1990.pl
dc.description.referencesGrzegorz Bancerek. Veblen hierarchy. Formalized Mathematics, 19(2):83–92, 2011. doi:10.2478/v10037-011-0014-5.pl
dc.description.referencesGrzegorz Bancerek. Consequences of the reflection theorem. Formalized Mathematics, 1 (5):989–993, 1990.pl
dc.description.referencesGrzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973–977, 1990.pl
dc.description.referencesGrzegorz Bancerek and Noboru Endou. Compactness of lim-inf topology. Formalized Mathematics, 9(4):739–743, 2001.pl
dc.description.referencesGrzegorz Bancerek and Andrzej Kondracki. Mostowski’s fundamental operations – Part II. Formalized Mathematics, 2(3):425–427, 1991.pl
dc.description.referencesGrzegorz Bancerek, Noboru Endou, and Yuji Sakai. On the characterizations of compactness. Formalized Mathematics, 9(4):733–738, 2001.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesChad E. Brown and Karol Pąk. A tale of two set theories. In Cezary Kaliszyk, Edwin Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics – 12th International Conference, CICM 2019, CIIRC, Prague, Czech Republic, July 8-12, 2019, Proceedings, volume 11617 of Lecture Notes in Computer Science, pages 44–60. Springer, 2019. doi:10.1007/978-3-030-23250-4_4.pl
dc.description.referencesCzesław Byliński. Category Ens. Formalized Mathematics, 2(4):527–533, 1991.pl
dc.description.referencesOlivia Caramello and Riccardo Zanfa. Relative topos theory via stacks. arXiv preprint arXiv:2107.04417, 2021.pl
dc.description.referencesDaniel Gratzer, Michael Shulman, and Jonathan Sterling. Strict universes for Grothendieck topoi. arXiv preprint arXiv:2202.12012, 2022.pl
dc.description.referencesEwa Grądzka. On the order-consistent topology of complete and uncomplete lattices. Formalized Mathematics, 9(2):377–382, 2001.pl
dc.description.referencesAndrzej Kondracki. Mostowski’s fundamental operations – Part I. Formalized Mathematics, 2(3):371–375, 1991.pl
dc.description.referencesJacob Lurie. Higher Topos Theory. Princeton University Press, 2009.pl
dc.description.referencesSaunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, Heidelberg, Berlin, 1971.pl
dc.description.referencesBeata Madras. Irreducible and prime elements. Formalized Mathematics, 6(2):233–239, 1997.pl
dc.description.referencesMichał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.pl
dc.description.referencesMichał Muzalewski. Category of left modules. Formalized Mathematics, 2(5):649–652, 1991.pl
dc.description.referencesMichał Muzalewski. Rings and modules – part II. Formalized Mathematics, 2(4):579–585, 1991.pl
dc.description.referencesMichał Muzalewski. Category of rings. Formalized Mathematics, 2(5):643–648, 1991.pl
dc.description.referencesnLab Authors. Grothendieck universe, 2022.pl
dc.description.referencesBogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3): 595–600, 1990.pl
dc.description.referencesKarol Pąk. Grothendieck universes. Formalized Mathematics, 28(2):211–215, 2020. doi:10.2478/forma-2020-0018.pl
dc.description.referencesKrzysztof Retel. The class of series-parallel graphs. Part II. Formalized Mathematics, 11 (3):289–291, 2003.pl
dc.description.referencesMarco Riccardi. Free magmas. Formalized Mathematics, 18(1):17–26, 2010. doi:10.2478/v10037-010-0003-0.pl
dc.description.referencesEmily Riehl. Category theory in context. Courier Dover Publications, 2017.pl
dc.description.referencesMichael A. Shulman. Set theory for category theory. arXiv preprint arXiv:0810.1279,2008.pl
dc.description.referencesBartłomiej Skorulski. Lim-inf convergence. Formalized Mathematics, 9(2):237–240, 2001.pl
dc.description.referencesAndrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.pl
dc.description.referencesAndrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213–225, 1997.pl
dc.description.referencesJosef Urban. Mahlo and inaccessible cardinals. Formalized Mathematics, 9(3):485–489, 2001.pl
dc.description.referencesMariusz Żynel. The equational characterization of continuous lattices. Formalized Mathematics, 6(2):199–205, 1997.pl
dc.identifier.eissn1898-9934-
dc.description.volume30pl
dc.description.issue1pl
dc.description.firstpage53pl
dc.description.lastpage66pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-4901-0766-
Występuje w kolekcji(ach):Formalized Mathematics, 2022, Volume 30, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2022-0005.pdf306,04 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons