

Non-Trivial Universes and Sequences of $Universes^1$

Roland Coghetto^D cafr-MSA2P asbl Rue de la Brasserie 5 7100 La Louvière, Belgium

Summary. Universe is a concept which is present from the beginning of the creation of the Mizar Mathematical Library (MML) in several forms (Universe, Universe_closure, UNIVERSE) [25], then later as the_universe_of, [33], and recently with the definition GrothendieckUniverse [26], [11], [11]. These definitions are useful in many articles [28, 33, 8, 35], [19, 32, 31, 15, 6], but also [34, 12, 20, 22, 21], [27, 2, 3, 23, 16, 7, 4, 5].

In this paper, using the Mizar system [9] [10], we trivially show that Grothendieck's definition of Universe as defined in [26], coincides with the original definition of Universe defined by Artin, Grothendieck, and Verdier (*Chapitre 0 Univers et Appendice "Univers" (par N. Bourbaki) de l'Exposé I. "PREFAISCE-*AUX") [1], and how the different definitions of MML concerning universes are related. We also show that the definition of Universe introduced by Mac Lane ([18]) is compatible with the MML's definition.

Although a universe may be empty, we consider the properties of non-empty universes, completing the properties proved in [25].

We introduce the notion of "trivial" and "non-trivial" Universes, depending on whether or not they contain the set ω (NAT), following the notion of Robert M. Solovay². The following result links the universes U₀ (FinSETS) and U₁ (SETS):

GrothendieckUniverse ω = GrothendieckUniverse $\mathbf{U}_0 = \mathbf{U}_1$

Before turning to the last section, we establish some trivial propositions allowing the construction of sets outside the considered universe.

¹This work has been supported by the *Centre autonome de formation et de recherche en mathématiques et sciences avec assistants de preuve*, ASBL (non-profit organization). Enterprise number: 0777.779.751. Belgium.

²https://cs.nyu.edu/pipermail/fom/2008-March/012783.html

The last section is devoted to the construction, in Tarski-Grothendieck, of a tower of universes indexed by the ordinal numbers (See 8. Examples, Grothendieck universe, neutlab.org [24]).

Grothendieck's universe is referenced in current works: "Assuming the existence of a sufficient supply of (Grothendieck) univers", Jacob Lurie in "Higher Topos Theory" [17], "Annexe B – Some results on Grothendieck universes", Olivia Caramello and Riccardo Zanfa in "Relative topos theory via stacks" [13], "Remark 1.1.5 (quoting Michael Shulman [30])", Emily Riehl in "Category theory in Context" [29], and more specifically "Strict Universes for Grothendieck Topoi" [14].

MSC: 03E70 68V20

Keywords: Tarski-Grothendieck set theory; Grothendieck universe; universe hierarchy

 $\mathrm{MML} \ \mathrm{identifier:} \ CLASSES4, \ \mathrm{version:} \ 8.1.12 \ 5.71.1431$

1. Preliminaries

Now we state the propositions:

(1) Let us consider a set X. Then $\pi_1(X), \pi_2(X) \in 2 \bigcup \bigcup X$.

(2) \mathbb{R}^* = the set of all X where X is a finite sequence of elements of \mathbb{R} .

One can verify that there exists a Grothendieck which is empty and there exists a Grothendieck which is non empty.

Let X be a set. One can verify that every Grothendieck of X is non empty.

2. Original Definitions of Grothendieck's Universe

Let \mathcal{G} be a set. We say that \mathcal{G} satisfies axiom GU_1 if and only if

(Def. 1) for every sets x, y such that $x \in \mathcal{G}$ and $y \in x$ holds $y \in \mathcal{G}$.

We say that \mathcal{G} satisfies axiom GU_2 if and only if

(Def. 2) for every sets x, y such that $x, y \in \mathcal{G}$ holds $\{x, y\} \in \mathcal{G}$. We say that \mathcal{G} satisfies axiom GU₃ if and only if

(Def. 3) for every set x such that $x \in \mathcal{G}$ holds $2^x \in \mathcal{G}$. Let \mathcal{G} be a non empty set. We say that \mathcal{G} satisfies axiom GU_4 if and only if

(Def. 4) for every element I of \mathcal{G} and for every \mathcal{G} -valued many sorted set x indexed by $I, \bigcup \operatorname{rng} x \in \mathcal{G}$.

3. Equivalences of Definitions

Now we state the propositions:

- (3) Let us consider a set X. Then X satisfies axiom GU_1 if and only if X is transitive.
- (4) Let us consider a non empty set X. Then X satisfies axiom GU_4 if and only if X is Family-Union-closed.
- (5) Let us consider a Family-Union-closed set X, and a function f. Suppose dom $f \in X$ and rng $f \subseteq X$. Then \bigcup rng $f \in X$.

One can check that every Grothendieck satisfies axiom GU_1 , axiom GU_2 , and axiom GU_3 and every non empty Grothendieck satisfies axiom GU_4 .

Now we state the proposition:

(6) Let us consider a non empty set \mathcal{G} . Suppose \mathcal{G} satisfies axiom GU_1 , axiom GU_2 , axiom GU_3 , and axiom GU_4 . Then \mathcal{G} is a non empty Grothendieck.

Let us consider a set X. Now we state the propositions:

- (7) X is a universal class if and only if X is a non empty Grothendieck.
- (8) $\mathbf{T}(\{X\}^{*\in})$ is a Grothendieck of X.
- (9) The universe of $\{X\}$ is a Grothendieck of X. The theorem is a consequence of (8).
- (10) Universe_closure($\{X\}$) = GrothendieckUniverse(X).

4. Equivalences of Mac Lane Definition

Now we state the propositions:

- (11) Let us consider a Grothendieck U. Suppose $\omega \in U$. Then
 - (i) for every sets x, u such that $x \in u \in U$ holds $x \in U$, and
 - (ii) for every sets u, v such that $u, v \in U$ holds $\{u, v\}, \langle u, v \rangle, u \times v \in U$, and
 - (iii) for every set x such that $x \in U$ holds $2^x, \bigcup x \in U$, and
 - (iv) $\omega \in U$, and
 - (v) for every sets a, b and for every function f from a into b such that dom f = a and f is onto and $a \in U$ and $b \subseteq U$ holds $b \in U$.
- (12) Let us consider a set U. Suppose for every sets x, u such that $x \in u \in U$ holds $x \in U$ and for every set x such that $x \in U$ holds $2^x, \bigcup x \in U$ and $\omega \in U$ and for every sets a, b and for every function f from a into b such that dom f = a and f is onto and $a \in U$ and $b \subseteq U$ holds $b \in U$. Then Uis a Grothendieck. The theorem is a consequence of (4) and (3).

5. Properties of Universe, Following [25]

From now on X denotes a set and \mathcal{U} denotes a universal class. Now we state the proposition:

- (13) Suppose X satisfies axiom GU_1 and axiom GU_3 . Then
 - (i) for every set y and for every subset x of y such that $y \in X$ holds $x \in X$, and
 - (ii) for every sets x, y such that $x \subseteq y$ and $y \in X$ holds $x \in X$, and
 - (iii) if X is not empty, then $\emptyset \in X$.

Let \mathcal{U} be a universal class. The functor $\emptyset_{\mathcal{U}}$ yielding an element of \mathcal{U} is defined by the term

(Def. 5) \emptyset .

Now we state the propositions:

- (14) \mathcal{U} is a Grothendieck of \emptyset . The theorem is a consequence of (13).
- (15) Let us consider elements u, v of \mathcal{U} . Then $v^u \subseteq$ the set of all f where f is a function from u into v.

Let \mathcal{U} be a universal class and u be an element of \mathcal{U} . Note that the functor succ u yields an element of \mathcal{U} . Now we state the propositions:

(16) Let us consider a natural number n. Then $n \in \mathcal{U}$. PROOF: Define $\mathcal{P}[\text{natural number}] \equiv \$_1 \in \mathcal{U}$. $\mathcal{P}[0]$. For every natural number $n, \mathcal{P}[n]$. \Box

(17)
$$\omega \subseteq \mathcal{U}.$$

(18) (i) $\mathbb{N} \in \mathcal{U}$, or

(ii) $\mathbb{N} \approx \mathcal{U}$.

The theorem is a consequence of (16).

Let us note that every universal class is infinite. Now we state the proposition:

(19) \mathbf{U}_0 is denumerable.

Observe that there exists a universal class which is denumerable. Now we state the proposition:

(20) \mathcal{U} is not denumerable if and only if $\omega \in \mathcal{U}$.

Observe that there exists a universal class which is non denumerable. Let \mathcal{U} be a universal class. We say that \mathcal{U} is trivial if and only if

(Def. 6) $\omega \notin \mathcal{U}$.

Now we state the proposition:

(21) (i) \mathbf{U}_0 is trivial, and

- (ii) \mathbf{U}_1 is not trivial.
- The theorem is a consequence of (16), (13), (19), and (20).

One can check that there exists a universal class which is trivial and there exists a universal class which is non trivial and every non trivial universal class is non denumerable. Now we state the proposition:

- (22) Let us consider an element x of \mathcal{U} , and objects y, z. Suppose $x = \langle y, z \rangle$. Then
 - (i) y is an element of \mathcal{U} , and
 - (ii) z is an element of \mathcal{U} .

Let \mathcal{U} be a universal class. Let us note that there exists an element of \mathcal{U} which is pair. Now we state the proposition:

(23) Let us consider elements u, v of \mathcal{U} . Then the set of all f where f is a function from u into v is an element of \mathcal{U} . The theorem is a consequence of (13).

Let \mathcal{U} be a universal class, I be an element of \mathcal{U} , and x be a \mathcal{U} -valued many sorted set indexed by I. Let us observe that the functor $\prod x$ yields an element of \mathcal{U} . Let x, y be elements of \mathcal{U} . The functor $x \uplus y$ yielding an element of \mathcal{U} is defined by the term

(Def. 7) $[x \longmapsto \emptyset_{\mathcal{U}}, y \longmapsto \{\emptyset_{\mathcal{U}}\}].$

Now we state the propositions:

- (24) Let us consider elements x, y of \mathcal{U} . Then $x \uplus y$ is a subset of $\{x, y\} \times \{\emptyset, \{\emptyset\}\}$.
- (25) Let us consider an element u of \mathcal{U} . Then $u \uplus u = \{\langle u, \{\emptyset\} \rangle\}$.

Let \mathcal{U} be a universal class, I be an element of \mathcal{U} , and x be a \mathcal{U} -valued many sorted set indexed by I. Note that the functor dom x yields an element of \mathcal{U} . Note that the functor $\bigcup x$ yields an element of \mathcal{U} . Let us note that the functor disjoint x yields a \mathcal{U} -valued many sorted set indexed by I. The functor $\bigcup x$ yielding an element of \mathcal{U} is defined by the term

(Def. 8) \bigcup disjoint x.

Let us consider an element I of \mathcal{U} and a \mathcal{U} -valued many sorted set x indexed by I. Now we state the propositions:

- (26) $\bigcup \operatorname{coprod}(x)$ is an element of \mathcal{U} .
- (27) $\biguplus x$ is a subset of $\bigcup \operatorname{rng} x \times I$.
- (28) If X satisfies axiom GU_2 , then for every set x such that $x \in X$ holds $\{x\} \in X$.

Let us consider an element u of \mathcal{U} . Now we state the propositions:

(29)
$$\overline{\overline{u}} \in \mathcal{U}.$$

- (30) (i) $u \not\approx \mathcal{U}$, and (ii) $\overline{\overline{u}} \in \overline{\overline{\mathcal{U}}}$.
- (31) Let us consider elements u, v of \mathcal{U} . Then $\{\langle u, \emptyset \rangle, \langle v, \{\emptyset\} \rangle\} = \{u\} \times \{\emptyset\} \cup \{v\} \times \{\{\emptyset\}\}.$
- (32) Let us consider elements I, a, b, u, v of \mathcal{U} , and a \mathcal{U} -valued many sorted set x indexed by I. Suppose $I = \{a, b\}$ and x(a) = u and x(b) = v. Then $\biguplus x = u \times \{a\} \cup v \times \{b\}$.

Let us consider elements I, u, v of \mathcal{U} and a \mathcal{U} -valued many sorted set x indexed by I. Now we state the propositions:

- (33) Suppose $I = \{\emptyset, \{\emptyset\}\}$ and $x(\emptyset) = u$ and $x(\{\emptyset\}) = v$. Then $\biguplus x = u \times \{\emptyset\} \cup v \times \{\{\emptyset\}\}$. The theorem is a consequence of (32).
- (34) Suppose $I = \{\emptyset, \{\emptyset\}\}$ and $x(\emptyset) = \{u\}$ and $x(\{\emptyset\}) = \{v\}$ and $u \neq v$. Then $\forall x = u \forall v$. The theorem is a consequence of (33) and (31).
- (35) Let us consider an element x of \mathcal{U} , and objects y, z. Suppose $x = \langle y, z \rangle$. Then
 - (i) y is an element of \mathcal{U} , and
 - (ii) z is an element of \mathcal{U} .

Let \mathcal{U} be a universal class. Observe that there exists an element of \mathcal{U} which is pair.

Let u be a pair element of \mathcal{U} . The functors: $(u)_1$ and $(u)_2$ yield elements of \mathcal{U} . Now we state the proposition:

- (36) Let us consider an element X of \mathcal{U} . Then
 - (i) $\pi_1(X)$ is an element of \mathcal{U} , and
 - (ii) $\pi_2(X)$ is an element of \mathcal{U} .

The theorem is a consequence of (1).

- Let us consider a binary relation R. Now we state the propositions:
- (37) If $R \in \mathcal{U}$, then dom R, rng $R \in \mathcal{U}$. The theorem is a consequence of (36).
- (38) If dom R is an element of \mathcal{U} and rng R is an element of \mathcal{U} , then R is an element of \mathcal{U} . The theorem is a consequence of (13).
- (39) Let us consider a set X, a non empty set Y, and a function f from X into Y. If $f \in \mathcal{U}$, then $X \in \mathcal{U}$. The theorem is a consequence of (37).
- (40) Let us consider non empty sets A, B. Suppose $A \times B$ is an element of \mathcal{U} . Then
 - (i) A is an element of \mathcal{U} , and
 - (ii) B is an element of \mathcal{U} .

The theorem is a consequence of (36).

- (41) Let us consider a set X. Suppose id_X is an element of \mathcal{U} . Then X is an element of \mathcal{U} . The theorem is a consequence of (37).
- (42) Let us consider elements x, y, z of \mathcal{U} . Then $\langle x, y \rangle \longmapsto z$ is an element of \mathcal{U} .

6. Properties of Universe Containing ω

Now we state the propositions:

- (43) $\omega \subset \mathbf{U}_0$. The theorem is a consequence of (16).
- (44) Let us consider a set X. Then $\mathbf{T}(\emptyset) \subseteq \mathbf{T}(X)$.
- (45) Let us consider a Grothendieck \mathcal{G} of X. Then $\mathbf{U}_0 \subseteq \mathcal{G}$. The theorem is a consequence of (44).
- (46) (i) GrothendieckUniverse(\emptyset) = **U**₀, and

(ii) GrothendieckUniverse(\emptyset) = \mathbf{U}_{\emptyset} .

- (47) Let us consider a set X, and a Grothendieck \mathcal{G} of X. Then Grothendieck Universe $(\emptyset) \subseteq$ GrothendieckUniverse $(X) \subseteq \mathcal{G}$.
- (48) Let us consider an element n of \mathbf{U}_0 . Then GrothendieckUniverse $(n) = \mathbf{U}_0$. The theorem is a consequence of (45).
- (49) the empty Grothendieck $\subset \omega \subset$ GrothendieckUniverse(\emptyset) \subset Grothendieck Universe(ω). The theorem is a consequence of (16), (46), (43), (19), and (20).
- (50) Let us consider a non empty Grothendieck \mathcal{G} . Suppose $\mathcal{G} \neq$ Grothendieck Universe(ω). Then
 - (i) GrothendieckUniverse(ω) $\in \mathcal{G}$, or
 - (ii) $\mathcal{G} \in \text{GrothendieckUniverse}(\omega)$.
- (51) $\mathbf{T}(\omega) = \text{GrothendieckUniverse}(\omega).$
- (52) Let us consider sets N_1 , N_2 . Suppose $N_1 = \mathbb{N} \times \mathbb{N} \cup \mathbb{N}$ and $N_2 = N_1 \cup 2^{N_1}$. Then $\mathbb{R} \subseteq N_2 \cup \mathbb{N} \times N_2$.

Let us consider a non trivial universal class \mathcal{U} . Now we state the propositions:

- (53) \mathbb{R} is an element of \mathcal{U} . The theorem is a consequence of (52) and (13).
- (54) \mathbb{R} is an element of \mathcal{U} . The theorem is a consequence of (53) and (13).
- (55) $\mathbb{C} \in \mathcal{U}$. The theorem is a consequence of (16), (53), and (13).
- (56) $\mathbb{H} \in \mathcal{U}$. The theorem is a consequence of (16), (53), (55), and (13).
- (57) Let us consider a natural number n. Then $\operatorname{Seg} n \in \mathcal{U}$. The theorem is a consequence of (16) and (13).

- (58) Let us consider a set D. If $D \in \mathcal{U}$, then for every natural number n, $D^n \in \mathcal{U}$. The theorem is a consequence of (57).
- (59) Let us consider a non trivial universal class \mathcal{U} , and a natural number n. Then $\mathcal{R}^n \in \mathcal{U}$. The theorem is a consequence of (53) and (58).

Let us consider a set X and a natural number n. Now we state the propositions:

- (60) If $X \in \mathcal{U}$, then $X^n \in \mathcal{U}$. The theorem is a consequence of (57).
- (61) $X^n \subseteq X^*$.
- (62) Let us consider a non empty set X, and an object x. If $x \in X^*$, then there exists a natural number n such that $x \in X^n$.
- (63) Let us consider a non empty set X. Then there exists a function f such that
 - (i) dom $f = \mathbb{N}$, and
 - (ii) for every natural number $n, f(n) = X^n$, and
 - (iii) $\bigcup \operatorname{rng} f = X^*$.

PROOF: Define $\mathcal{P}[\text{object}, \text{object}] \equiv \text{there exists a natural number } n \text{ such that } \$_1 = n \text{ and } \$_2 = X^n$. For every object x such that $x \in \mathbb{N}$ there exists an object y such that $\mathcal{P}[x, y]$. Consider f being a function such that dom $f = \mathbb{N}$ and for every object x such that $x \in \mathbb{N}$ holds $\mathcal{P}[x, f(x)]$. For every natural number $n, f(n) = X^n$. $\bigcup \operatorname{rng} f = X^*$. \Box

(64) Let us consider a non trivial universal class \mathcal{U} , and a non empty set X. If $X \in \mathcal{U}$, then $X^* \in \mathcal{U}$. The theorem is a consequence of (63) and (58).

Let us consider a non trivial universal class \mathcal{U} . Now we state the propositions:

- (65) $\mathbb{R}^* \in \mathcal{U}$. The theorem is a consequence of (53) and (64).
- (66) $\overline{\mathbb{R}}^* \in \mathcal{U}$. The theorem is a consequence of (54) and (64).
- (67) $\mathbb{C}^* \in \mathcal{U}.$
- $(68) \quad (\mathbb{H})^* \in \mathcal{U}.$
- (69) Let us consider a universal class \mathcal{U} , and a set X. If $X \in \mathcal{U}$, then for every finite sequence s of elements of X, $s \in \mathcal{U}$. The theorem is a consequence of (57) and (13).
- (70) Let us consider an empty set X, and a finite sequence f of elements of X^* . Then $f = \text{len } f \mapsto 0$.
- (71) Let us consider a non trivial universal class \mathcal{U} , and a non empty set D. If $D \in \mathcal{U}$, then for every matrix M over $D, M \in \mathcal{U}$.
- (72) $\mathbf{U}_0, \mathbb{N}, \mathbb{R}, \overline{\mathbb{R}} \in \mathbf{U}_1$. The theorem is a consequence of (16), (13), (53), and (54).

- (73) Let us consider a set X, and a universal class \mathcal{U} . If $\mathcal{U} \in \mathbf{T}(X)$, then $\mathbf{T}(\mathcal{U}) \subseteq \mathbf{T}(X)$.
- (74) $\mathbf{U}_0 \in \mathbf{T}(\omega)$. The theorem is a consequence of (19) and (20).
- (75) $\mathbf{U}_1 = \mathbf{T}(\omega)$. The theorem is a consequence of (72), (73), and (74).
- (76) GrothendieckUniverse(ω) = U₁.
- (77) GrothendieckUniverse(ω) = GrothendieckUniverse(\mathbf{U}_0) = \mathbf{U}_1 . PROOF: GrothendieckUniverse(ω) = GrothendieckUniverse(\mathbf{U}_0). \Box

Let us consider a non empty set X, a Grothendieck \mathcal{G}' of X, and a universal class \mathcal{G} . Now we state the propositions:

- (78) If X misses \mathcal{G} , then $\mathcal{G}' \neq \mathcal{G}$.
- (79) If X misses \mathcal{G} , then $\mathcal{G}' \in \mathcal{G}$ or $\mathcal{G} \in \mathcal{G}'$.
- (80) Let us consider universal classes $\mathcal{U}, \mathcal{U}'$, and an element a of \mathcal{U} . If $a \notin \mathcal{U}'$, then $\mathcal{U}' \in \mathcal{U}$. The theorem is a consequence of (78).
- (81) Let us consider a Grothendieck \mathcal{G} . Then $\bigcup \mathcal{G} = \mathcal{G}$. One can verify that every Grothendieck is limit ordinal. Now we state the proposition:
- (82) Let us consider a universal class \mathcal{U} , and a non empty element V of \mathcal{U} . Then Funcs V is a subset of \mathcal{U} . The theorem is a consequence of (81).

7. How to Get Out of a Universe?

Now we state the propositions:

- (83) There exists a set a such that $a \notin \mathcal{U}$.
- (84) There exists a subset A of \mathcal{U} such that $A \notin \mathcal{U}$.
- (85) the set of all u where u is an element of \mathcal{U} is not an element of \mathcal{U} .
- (86) Let us consider an element X of \mathcal{U} . Then $\mathcal{U} \setminus X$ is not an element of \mathcal{U} . PROOF: $\mathcal{U} \setminus X \notin \mathcal{U}$. \Box
- (87) $2^{\mathcal{U}} \notin \mathcal{U}$.

8. A Sequence of Universes

Now we state the proposition:

- (88) Let us consider a set X. Then there exists a function f such that
 - (i) dom $f = \mathbb{N}$, and
 - (ii) f(0) = X, and
 - (iii) for every natural number n, f(n+1) = GrothendieckUniverse(f(n)).

PROOF: Define $\mathcal{G}(\text{set}, \text{set}) = \text{GrothendieckUniverse}(\$_2)$. There exists a function f such that dom $f = \mathbb{N}$ and f(0) = X and for every natural number $n, f(n+1) = \mathcal{G}(n, f(n))$. \Box

The Construction of X, GrothendieckUniverse(X), GrothendieckUniverse (GrothendieckUniverse(X)), . . .

Let X be a set. The functor sequence-universe(X) yielding a function is defined by

(Def. 9) dom $it = \mathbb{N}$ and it(0) = X and for every natural number n, it(n+1) =GrothendieckUniverse(it(n)).

Now we state the propositions:

- (89) Let us consider a set X. Then sequence-universe(X) is a transfinite sequence.
- (90) Let us consider a set X, and a transfinite sequence S. If dom $S = \mathbb{N}$, then last $S = S(\mathbb{N})$.
- (91) Let us consider a transfinite sequence S. Suppose dom $S = \mathbb{N}$. Then
 - (i) $S(\mathbb{N}) = \emptyset$, and
 - (ii) last $S = \emptyset$.

The theorem is a consequence of (90).

- (92) Let us consider a set X, and a transfinite sequence S. Suppose S =sequence-universe(X). Then
 - (i) last $S = \emptyset$, and
 - (ii) $S(\mathbb{N}) = \emptyset$.

The theorem is a consequence of (91).

The Construction of $X \cup$ GrothendieckUniverse $(X) \cup$ GrothendieckUniverse $(X) \cup$...

Let X be a set. The functor union-sequence-universe (X) yielding a non empty set is defined by the term

(Def. 10) \bigcup rng sequence-universe(X).

Now we state the proposition:

(93) Let us consider a set X. Then rng sequence-universe $(X) \subseteq$ union-sequence-universe(X).

THE FORMAL COUNTERPART OF $\emptyset(=\mathcal{U}_0) \in \mathcal{U}_1 \in \mathcal{U}_2 \in \ldots$: Sequence of universes indexed by the ordinal numbers (see 8. Examples, Grothendieck Universe [24]).

The functor sequence-universe yielding a sequence of union-sequence-universe (\emptyset) is defined by the term

(Def. 11) sequence-universe(\emptyset).

Now we state the propositions:

- (94) \emptyset , \mathbf{U}_0 , $\mathbf{U}_1 \in \text{rng sequence-universe.}$ The theorem is a consequence of (45) and (77).
- (95) $\bigcup_{n < \omega} \mathcal{U}_n$ IS NOT A UNIVERSE: Urng sequence-universe is not a Grothendieck. The theorem is a consequence of (72) and (94).
- (96) (i) $\mathbf{T}(\mathbf{U}_0) = \text{GrothendieckUniverse}(\mathbf{U}_0)$, and
 - (ii) $\mathbf{T}(\mathbf{U}_1) = \text{GrothendieckUniverse}(\mathbf{U}_1).$
- (97) Let us consider a set X, and a natural number n. Then
 - (i) (sequence-universe(X))(n+1) is transitive, and
 - (ii) $\mathbf{T}((\text{sequence-universe}(X))(n+1)) =$ GrothendieckUniverse((sequence-universe(X))(n+1)).

Let us consider a natural number n. Now we state the propositions:

- (98) $\mathbf{T}((\text{sequence-universe}(\mathbf{U}_0))(n)) =$ GrothendieckUniverse((sequence-universe(\mathbf{U}_0))(n)). The theorem is a con-
- (99) $\mathbf{U}_n \in \mathbf{U}_{n+1}$.

sequence of (77).

- (100) (sequence-universe(\mathbf{U}_0)) $(n) = \mathbf{U}_n$. PROOF: Define $\mathcal{P}[$ natural number $] \equiv ($ sequence-universe (\mathbf{U}_0)) $(\$_1) = \mathbf{U}_{\$_1}$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$. \Box
- (101) GrothendieckUniverse((sequence-universe(\emptyset))(n)) = (sequence-universe(GrothendieckUniverse(\emptyset)))(n). PROOF: Define $\mathcal{P}[$ natural number] \equiv GrothendieckUniverse((sequenceuniverse(\emptyset))($\$_1$)) = (sequence-universe(GrothendieckUniverse(\emptyset)))($\$_1$). $\mathcal{P}[0]$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number k, $\mathcal{P}[k]$. \Box
- (102) (sequence-universe) $(n+1) = \mathbf{U}_n$. The theorem is a consequence of (46), (100), and (101).

Let us note that there exists an element of $\bigcup \operatorname{rng}$ sequence-universe which is non empty.

Now we state the propositions:

- (103) $\mathbf{U}_0, \mathbf{U}_1 \in \text{GrothendieckUniverse}(\text{sequence-universe})$. The theorem is a consequence of (45) and (77).
- (104) Let us consider a natural number n. Then (sequence-universe) $(n + 1) \in$ GrothendieckUniverse(sequence-universe). The theorem is a consequence of (45) and (102).

THE CONSTRUCTION OF \mathcal{U}_{ω} : Tower of universes indexed by the ordinal numbers (see 8. Examples, Grothendieck Universe [24]).

The functor \mathcal{U}_{ω} yielding a non trivial universal class is defined by the term (Def. 12) GrothendieckUniverse(sequence-universe).

Now we state the proposition:

(105) Let us consider a natural number n. Then (sequence-universe) $(n) \subseteq$ (sequence-universe)(n + 1). PROOF: Define \mathcal{P} [natural number] \equiv (sequence-universe) $(\$_1) \subseteq$ (sequence-universe) $(\$_1 + 1)$. \mathcal{P} [0]. For every natural number k such that $\mathcal{P}[k]$ holds

 $\mathcal{P}[k+1]$. For every natural number $n, \mathcal{P}[n]$. \Box

Let X be an element of \bigcup rng sequence-universe. The functor rank-universe(X) yielding a natural number is defined by

(Def. 13) $X \in (\text{sequence-universe})(it)$ and for every natural number n such that n < it holds $X \notin (\text{sequence-universe})(n)$.

Now we state the propositions:

(106) Let us consider an element X of \bigcup rng sequence-universe, and a natural number n. Suppose rank-universe $(X) \leq n$.

Then $X \in (\text{sequence-universe})(n)$.

PROOF: Define $\mathcal{P}[\text{natural number}] \equiv X \in (\text{sequence-universe})(\$_1)$. For every natural number j such that rank-universe $(X) \leq j$ and $\mathcal{P}[j]$ holds $\mathcal{P}[j+1]$. For every natural number i such that rank-universe $(X) \leq i$ holds $\mathcal{P}[i]$. \Box

- (107) Let us consider a natural number *i*. Then there exists a set *x* such that $x \in (\text{sequence-universe})(i + 1) \setminus (\text{sequence-universe})(i)$. The theorem is a consequence of (105) and (102).
- (108) Let us consider a natural number *n*. Then $\mathbf{U}_{n+1} \setminus (\mathbf{U}_n) \notin \mathbf{U}_{n+1}$. The theorem is a consequence of (99) and (86).

The functor Compl Universe yielding a function from $\mathbb N$ into $\bigcup \operatorname{rng}$ sequence-universe is defined by

(Def. 14) for every natural number n, $it(n) = \mathbf{U}_{n+1} \setminus (\mathbf{U}_n)$.

Let us consider a natural number n. Now we state the propositions:

- (109) (ComplUniverse)(n) is not empty. The theorem is a consequence of (99).
- (110) (ComplUniverse) $(n) \subseteq \mathbf{U}_{n+1}$.
- (111) There exists a function f from \mathbb{N} into $\bigcup \bigcup$ rng sequence-universe such that for every natural number $i, f(i) \in (\text{ComplUniverse})(i)$. PROOF: Set g = the choice of ComplUniverse. rng $g \subseteq \bigcup \bigcup$ rng sequence-universe. For every natural number $i, g(i) \in (\text{ComplUniverse})(i)$. \Box

- (112) Let us consider a function f from \mathbb{N} into \bigcup rng sequence-universe. Then $f \in \mathcal{U}_{\omega}$. The theorem is a consequence of (13) and (104).
- (113) Let us consider a function f from \mathbb{N} into $\bigcup \bigcup$ rng sequence-universe. Then $f \in \mathcal{U}_{\omega}$. The theorem is a consequence of (13) and (104).

References

- M. Artin, A. Grothendieck, and J.L. Verdier. Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos (exposés i à iv). Séminaire de Géométrie Algébrique du Bois Marie, Vol.1964.
- [2] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.
- [3] Grzegorz Bancerek. Veblen hierarchy. Formalized Mathematics, 19(2):83–92, 2011. doi:10.2478/v10037-011-0014-5.
- [4] Grzegorz Bancerek. Consequences of the reflection theorem. Formalized Mathematics, 1 (5):989–993, 1990.
- [5] Grzegorz Bancerek. The reflection theorem. Formalized Mathematics, 1(5):973–977, 1990.
- [6] Grzegorz Bancerek and Noboru Endou. Compactness of lim-inf topology. Formalized Mathematics, 9(4):739–743, 2001.
- [7] Grzegorz Bancerek and Andrzej Kondracki. Mostowski's fundamental operations Part II. Formalized Mathematics, 2(3):425–427, 1991.
- [8] Grzegorz Bancerek, Noboru Endou, and Yuji Sakai. On the characterizations of compactness. Formalized Mathematics, 9(4):733–738, 2001.
- [9] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, *Intelligent Computer Mathematics*, volume 9150 of *Lecture Notes in Computer Science*, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.
- [10] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. *Journal of Automated Reasoning*, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.
- [11] Chad E. Brown and Karol Pąk. A tale of two set theories. In Cezary Kaliszyk, Edwin Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics – 12th International Conference, CICM 2019, CIIRC, Prague, Czech Republic, July 8-12, 2019, Proceedings, volume 11617 of Lecture Notes in Computer Science, pages 44–60. Springer, 2019. doi:10.1007/978-3-030-23250-4_4.
- [12] Czesław Byliński. Category Ens. Formalized Mathematics, 2(4):527–533, 1991.
- [13] Olivia Caramello and Riccardo Zanfa. Relative topos theory via stacks. arXiv preprint arXiv:2107.04417, 2021.
- [14] Daniel Gratzer, Michael Shulman, and Jonathan Sterling. Strict universes for Grothendieck topoi. arXiv preprint arXiv:2202.12012, 2022.
- [15] Ewa Grądzka. On the order-consistent topology of complete and uncomplete lattices. Formalized Mathematics, 9(2):377–382, 2001.
- [16] Andrzej Kondracki. Mostowski's fundamental operations Part I. Formalized Mathematics, 2(3):371–375, 1991.
- [17] Jacob Lurie. *Higher Topos Theory*. Princeton University Press, 2009.
- [18] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, Heidelberg, Berlin, 1971.
- [19] Beata Madras. Irreducible and prime elements. Formalized Mathematics, 6(2):233–239, 1997.
- [20] Michał Muzalewski. Categories of groups. Formalized Mathematics, 2(4):563–571, 1991.
- [21] Michał Muzalewski. Category of left modules. Formalized Mathematics, 2(5):649-652,

1991.

- [22] Michał Muzalewski. Rings and modules part II. Formalized Mathematics, 2(4):579–585, 1991.
- [23] Michał Muzalewski. Category of rings. Formalized Mathematics, 2(5):643–648, 1991.
- [24] nLab Authors. Grothendieck universe, 2022.
- [25] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3): 595–600, 1990.
- [26] Karol Pak. Grothendieck universes. Formalized Mathematics, 28(2):211–215, 2020. doi:10.2478/forma-2020-0018.
- [27] Krzysztof Retel. The class of series-parallel graphs. Part II. Formalized Mathematics, 11 (3):289–291, 2003.
- [28] Marco Riccardi. Free magmas. Formalized Mathematics, 18(1):17–26, 2010. doi:10.2478/v10037-010-0003-0.
- [29] Emily Riehl. Category theory in context. Courier Dover Publications, 2017.
- [30] Michael A. Shulman. Set theory for category theory. arXiv preprint arXiv:0810.1279, 2008.
- [31] Bartłomiej Skorulski. Lim-inf convergence. Formalized Mathematics, 9(2):237–240, 2001.
- [32] Andrzej Trybulec. Scott topology. Formalized Mathematics, 6(2):311–319, 1997.
- [33] Andrzej Trybulec. Moore-Smith convergence. Formalized Mathematics, 6(2):213–225, 1997.
- [34] Josef Urban. Mahlo and inaccessible cardinals. Formalized Mathematics, 9(3):485–489, 2001.
- [35] Mariusz Żynel. The equational characterization of continuous lattices. Formalized Mathematics, 6(2):199–205, 1997.

Accepted April 30, 2022