
FORMALIZED MATHEMATICS

Vol. 30, No. 1, Pages 53–66, 2022
ISSN: 1426–2630, e-ISSN: 1898–9934

DOI: 10.2478/forma-2022-0005 sciendo.com/journal/forma

Non-Trivial Universes and Sequences of
Universes1

Roland Coghetto
cafr-MSA2P asbl

Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. Universe is a concept which is present from the beginning of the
creation of the Mizar Mathematical Library (MML) in several forms (Universe,
Universe_closure, UNIVERSE) [25], then later as the_universe_of, [33], and
recently with the definition GrothendieckUniverse [26], [11], [11]. These defi-
nitions are useful in many articles [28, 33, 8, 35], [19, 32, 31, 15, 6], but also
[34, 12, 20, 22, 21], [27, 2, 3, 23, 16, 7, 4, 5].

In this paper, using the Mizar system [9] [10], we trivially show that Gro-
thendieck’s definition of Universe as defined in [26], coincides with the original
definition of Universe defined by Artin, Grothendieck, and Verdier (Chapitre 0
Univers et Appendice “Univers” (par N. Bourbaki) de l’Exposé I. “PREFAISCE-
AUX”) [1], and how the different definitions of MML concerning universes are
related. We also show that the definition of Universe introduced by Mac Lane
([18]) is compatible with the MML’s definition.

Although a universe may be empty, we consider the properties of non-empty
universes, completing the properties proved in [25].

We introduce the notion of “trivial” and “non-trivial” Universes, depending
on whether or not they contain the set ω (NAT), following the notion of Robert M.
Solovay2. The following result links the universes U0 (FinSETS) and U1 (SETS):

GrothendieckUniverse ω = GrothendieckUniverse U0 = U1

Before turning to the last section, we establish some trivial propositions
allowing the construction of sets outside the considered universe.

1This work has been supported by the Centre autonome de formation et de recherche en
mathématiques et sciences avec assistants de preuve, ASBL (non-profit organization). Enter-
prise number: 0777.779.751. Belgium.
2https://cs.nyu.edu/pipermail/fom/2008-March/012783.html
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The last section is devoted to the construction, in Tarski-Grothendieck, of a
tower of universes indexed by the ordinal numbers (See 8. Examples, Grothen-
dieck universe, ncatlab.org [24]).

Grothendieck’s universe is referenced in current works: “Assuming the exi-
stence of a sufficient supply of (Grothendieck) univers”, Jacob Lurie in “Higher
Topos Theory” [17], “Annexe B – Some results on Grothendieck universes”, Oli-
via Caramello and Riccardo Zanfa in “Relative topos theory via stacks” [13],
“Remark 1.1.5 (quoting Michael Shulman [30])”, Emily Riehl in “Category the-
ory in Context” [29], and more specifically “Strict Universes for Grothendieck
Topoi” [14].

MSC: 03E70 68V20

Keywords: Tarski-Grothendieck set theory; Grothendieck universe; universe
hierarchy

MML identifier: CLASSES4, version: 8.1.12 5.71.1431

1. Preliminaries

Now we state the propositions:

(1) Let us consider a set X. Then π1(X), π2(X) ∈ 2
⋃⋃

X .

(2) R∗ = the set of all X where X is a finite sequence of elements of R.

One can verify that there exists a Grothendieck which is empty and there
exists a Grothendieck which is non empty.

Let X be a set. One can verify that every Grothendieck of X is non empty.

2. Original Definitions of Grothendieck’s Universe

Let G be a set. We say that G satisfies axiom GU1 if and only if

(Def. 1) for every sets x, y such that x ∈ G and y ∈ x holds y ∈ G.

We say that G satisfies axiom GU2 if and only if

(Def. 2) for every sets x, y such that x, y ∈ G holds {x, y} ∈ G.

We say that G satisfies axiom GU3 if and only if

(Def. 3) for every set x such that x ∈ G holds 2x ∈ G.

Let G be a non empty set. We say that G satisfies axiom GU4 if and only if

(Def. 4) for every element I of G and for every G-valued many sorted set x indexed
by I,

⋃
rng x ∈ G.

http://zbmath.org/classification/?q=cc:03E70
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/classes4.miz
http://ftp.mizar.org/
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3. Equivalences of Definitions

Now we state the propositions:

(3) Let us consider a set X. Then X satisfies axiom GU1 if and only if X is
transitive.

(4) Let us consider a non empty set X. Then X satisfies axiom GU4 if and
only if X is Family-Union-closed.

(5) Let us consider a Family-Union-closed set X, and a function f . Suppose
dom f ∈ X and rng f ⊆ X. Then

⋃
rng f ∈ X.

One can check that every Grothendieck satisfies axiom GU1, axiom GU2,
and axiom GU3 and every non empty Grothendieck satisfies axiom GU4.

Now we state the proposition:

(6) Let us consider a non empty set G. Suppose G satisfies axiom GU1, axiom
GU2, axiom GU3, and axiom GU4. Then G is a non empty Grothendieck.

Let us consider a set X. Now we state the propositions:

(7) X is a universal class if and only if X is a non empty Grothendieck.

(8) T({X}∗∈) is a Grothendieck of X.

(9) The universe of {X} is a Grothendieck of X. The theorem is a consequ-
ence of (8).

(10) Universe closure({X}) = GrothendieckUniverse(X).

4. Equivalences of Mac Lane Definition

Now we state the propositions:

(11) Let us consider a Grothendieck U . Suppose ω ∈ U . Then

(i) for every sets x, u such that x ∈ u ∈ U holds x ∈ U , and

(ii) for every sets u, v such that u, v ∈ U holds {u, v}, 〈〈u, v〉〉, u× v ∈ U ,
and

(iii) for every set x such that x ∈ U holds 2x,
⋃
x ∈ U , and

(iv) ω ∈ U , and

(v) for every sets a, b and for every function f from a into b such that
dom f = a and f is onto and a ∈ U and b ⊆ U holds b ∈ U .

(12) Let us consider a set U . Suppose for every sets x, u such that x ∈ u ∈ U
holds x ∈ U and for every set x such that x ∈ U holds 2x,

⋃
x ∈ U and

ω ∈ U and for every sets a, b and for every function f from a into b such
that dom f = a and f is onto and a ∈ U and b ⊆ U holds b ∈ U . Then U

is a Grothendieck. The theorem is a consequence of (4) and (3).
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5. Properties of Universe, Following [25]

From now on X denotes a set and U denotes a universal class.
Now we state the proposition:

(13) Suppose X satisfies axiom GU1 and axiom GU3. Then

(i) for every set y and for every subset x of y such that y ∈ X holds
x ∈ X, and

(ii) for every sets x, y such that x ⊆ y and y ∈ X holds x ∈ X, and

(iii) if X is not empty, then ∅ ∈ X.

Let U be a universal class. The functor ∅U yielding an element of U is defined
by the term

(Def. 5) ∅.
Now we state the propositions:

(14) U is a Grothendieck of ∅. The theorem is a consequence of (13).

(15) Let us consider elements u, v of U . Then vu ⊆ the set of all f where
f is a function from u into v.

Let U be a universal class and u be an element of U . Note that the functor
succu yields an element of U . Now we state the propositions:

(16) Let us consider a natural number n. Then n ∈ U .
Proof: Define P[natural number] ≡ $1 ∈ U . P[0]. For every natural
number n, P[n]. �

(17) ω ⊆ U .

(18) (i) N ∈ U , or

(ii) N ≈ U .
The theorem is a consequence of (16).

Let us note that every universal class is infinite. Now we state the proposi-
tion:

(19) U0 is denumerable.

Observe that there exists a universal class which is denumerable.
Now we state the proposition:

(20) U is not denumerable if and only if ω ∈ U .

Observe that there exists a universal class which is non denumerable.
Let U be a universal class. We say that U is trivial if and only if

(Def. 6) ω /∈ U .

Now we state the proposition:

(21) (i) U0 is trivial, and
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(ii) U1 is not trivial.
The theorem is a consequence of (16), (13), (19), and (20).

One can check that there exists a universal class which is trivial and there
exists a universal class which is non trivial and every non trivial universal class
is non denumerable. Now we state the proposition:

(22) Let us consider an element x of U , and objects y, z. Suppose x = 〈〈y, z〉〉.
Then

(i) y is an element of U , and

(ii) z is an element of U .

Let U be a universal class. Let us note that there exists an element of U
which is pair. Now we state the proposition:

(23) Let us consider elements u, v of U . Then the set of all f where f is
a function from u into v is an element of U . The theorem is a consequence
of (13).

Let U be a universal class, I be an element of U , and x be a U-valued many
sorted set indexed by I. Let us observe that the functor

∏
x yields an element

of U . Let x, y be elements of U . The functor x ] y yielding an element of U is
defined by the term

(Def. 7) [x 7−→ ∅U , y 7−→ {∅U}].
Now we state the propositions:

(24) Let us consider elements x, y of U . Then x ] y is a subset of {x, y} ×
{∅, {∅}}.

(25) Let us consider an element u of U . Then u ] u = {〈〈u, {∅}〉〉}.
Let U be a universal class, I be an element of U , and x be a U-valued

many sorted set indexed by I. Note that the functor domx yields an element
of U . Note that the functor

⋃
x yields an element of U . Let us note that the

functor disjointx yields a U-valued many sorted set indexed by I. The functor⊎
x yielding an element of U is defined by the term

(Def. 8)
⋃

disjointx.

Let us consider an element I of U and a U-valued many sorted set x indexed
by I. Now we state the propositions:

(26)
⋃

coprod(x) is an element of U .

(27)
⊎
x is a subset of

⋃
rng x× I.

(28) If X satisfies axiom GU2, then for every set x such that x ∈ X holds
{x} ∈ X.

Let us consider an element u of U . Now we state the propositions:

(29) u ∈ U .
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(30) (i) u 6≈ U , and

(ii) u ∈ U .

(31) Let us consider elements u, v of U . Then {〈〈u, ∅〉〉, 〈〈v, {∅}〉〉} = {u} ×
{∅} ∪ {v} × {{∅}}.

(32) Let us consider elements I, a, b, u, v of U , and a U-valued many sorted
set x indexed by I. Suppose I = {a, b} and x(a) = u and x(b) = v. Then⊎
x = u× {a} ∪ v × {b}.

Let us consider elements I, u, v of U and a U-valued many sorted set x
indexed by I. Now we state the propositions:

(33) Suppose I = {∅, {∅}} and x(∅) = u and x({∅}) = v. Then
⊎
x = u ×

{∅} ∪ v × {{∅}}. The theorem is a consequence of (32).

(34) Suppose I = {∅, {∅}} and x(∅) = {u} and x({∅}) = {v} and u 6= v. Then⊎
x = u ] v. The theorem is a consequence of (33) and (31).

(35) Let us consider an element x of U , and objects y, z. Suppose x = 〈〈y, z〉〉.
Then

(i) y is an element of U , and

(ii) z is an element of U .

Let U be a universal class. Observe that there exists an element of U which
is pair.

Let u be a pair element of U . The functors: (u)1 and (u)2 yield elements of
U . Now we state the proposition:

(36) Let us consider an element X of U . Then

(i) π1(X) is an element of U , and

(ii) π2(X) is an element of U .

The theorem is a consequence of (1).

Let us consider a binary relation R. Now we state the propositions:

(37) If R ∈ U , then domR, rngR ∈ U . The theorem is a consequence of (36).

(38) If domR is an element of U and rngR is an element of U , then R is
an element of U . The theorem is a consequence of (13).

(39) Let us consider a set X, a non empty set Y, and a function f from X

into Y. If f ∈ U , then X ∈ U . The theorem is a consequence of (37).

(40) Let us consider non empty sets A, B. Suppose A × B is an element of
U . Then

(i) A is an element of U , and

(ii) B is an element of U .

The theorem is a consequence of (36).
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(41) Let us consider a set X. Suppose idX is an element of U . Then X is
an element of U . The theorem is a consequence of (37).

(42) Let us consider elements x, y, z of U . Then 〈x, y〉 7−→ z is an element of
U .

6. Properties of Universe Containing ω

Now we state the propositions:

(43) ω ⊂ U0. The theorem is a consequence of (16).

(44) Let us consider a set X. Then T(∅) ⊆ T(X).

(45) Let us consider a Grothendieck G of X. Then U0 ⊆ G. The theorem is
a consequence of (44).

(46) (i) GrothendieckUniverse(∅) = U0, and

(ii) GrothendieckUniverse(∅) = U∅.

(47) Let us consider a set X, and a Grothendieck G of X. Then Grothendieck
Universe(∅) ⊆ GrothendieckUniverse(X) ⊆ G.

(48) Let us consider an element n of U0. Then GrothendieckUniverse(n) =
U0. The theorem is a consequence of (45).

(49) the empty Grothendieck ⊂ ω ⊂ GrothendieckUniverse(∅) ⊂ Grothendieck
Universe(ω). The theorem is a consequence of (16), (46), (43), (19), and
(20).

(50) Let us consider a non empty Grothendieck G. Suppose G 6= Grothendieck
Universe(ω). Then

(i) GrothendieckUniverse(ω) ∈ G, or

(ii) G ∈ GrothendieckUniverse(ω).

(51) T(ω) = GrothendieckUniverse(ω).

(52) Let us consider sets N1, N2. Suppose N1 = N×N∪N and N2 = N1∪2N1 .
Then R ⊆ N2 ∪ N×N2.

Let us consider a non trivial universal class U . Now we state the propositions:

(53) R is an element of U . The theorem is a consequence of (52) and (13).

(54) R is an element of U . The theorem is a consequence of (53) and (13).

(55) C ∈ U . The theorem is a consequence of (16), (53), and (13).

(56) H ∈ U . The theorem is a consequence of (16), (53), (55), and (13).

(57) Let us consider a natural number n. Then Seg n ∈ U . The theorem is
a consequence of (16) and (13).
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(58) Let us consider a set D. If D ∈ U , then for every natural number n,
Dn ∈ U . The theorem is a consequence of (57).

(59) Let us consider a non trivial universal class U , and a natural number n.
Then Rn ∈ U . The theorem is a consequence of (53) and (58).

Let us consider a set X and a natural number n. Now we state the proposi-
tions:

(60) If X ∈ U , then Xn ∈ U . The theorem is a consequence of (57).

(61) Xn ⊆ X∗.
(62) Let us consider a non empty set X, and an object x. If x ∈ X∗, then

there exists a natural number n such that x ∈ Xn.
(63) Let us consider a non empty set X. Then there exists a function f such

that

(i) dom f = N, and

(ii) for every natural number n, f(n) = Xn, and

(iii)
⋃

rng f = X∗.

Proof: Define P[object, object] ≡ there exists a natural number n such
that $1 = n and $2 = Xn. For every object x such that x ∈ N there
exists an object y such that P[x, y]. Consider f being a function such that
dom f = N and for every object x such that x ∈ N holds P[x, f(x)]. For
every natural number n, f(n) = Xn.

⋃
rng f = X∗. �

(64) Let us consider a non trivial universal class U , and a non empty set X.
If X ∈ U , then X∗ ∈ U . The theorem is a consequence of (63) and (58).

Let us consider a non trivial universal class U . Now we state the propositions:

(65) R∗ ∈ U . The theorem is a consequence of (53) and (64).

(66) R∗ ∈ U . The theorem is a consequence of (54) and (64).

(67) C∗ ∈ U .

(68) (H)∗ ∈ U .

(69) Let us consider a universal class U , and a set X. If X ∈ U , then for every
finite sequence s of elements of X, s ∈ U . The theorem is a consequence
of (57) and (13).

(70) Let us consider an empty set X, and a finite sequence f of elements of
X∗. Then f = len f 7→ 0.

(71) Let us consider a non trivial universal class U , and a non empty set D.
If D ∈ U , then for every matrix M over D, M ∈ U .

(72) U0, N, R, R ∈ U1. The theorem is a consequence of (16), (13), (53), and
(54).
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(73) Let us consider a set X, and a universal class U . If U ∈ T(X), then
T(U) ⊆ T(X).

(74) U0 ∈ T(ω). The theorem is a consequence of (19) and (20).

(75) U1 = T(ω). The theorem is a consequence of (72), (73), and (74).

(76) GrothendieckUniverse(ω) = U1.

(77) GrothendieckUniverse(ω) = GrothendieckUniverse(U0) = U1.
Proof: GrothendieckUniverse(ω) = GrothendieckUniverse(U0). �

Let us consider a non empty set X, a Grothendieck G′ of X, and a universal
class G. Now we state the propositions:

(78) If X misses G, then G′ 6= G.

(79) If X misses G, then G′ ∈ G or G ∈ G′.
(80) Let us consider universal classes U , U ′, and an element a of U . If a /∈ U ′,

then U ′ ∈ U . The theorem is a consequence of (78).

(81) Let us consider a Grothendieck G. Then
⋃
G = G.

One can verify that every Grothendieck is limit ordinal.
Now we state the proposition:

(82) Let us consider a universal class U , and a non empty element V of U .
Then FuncsV is a subset of U . The theorem is a consequence of (81).

7. How to Get Out of a Universe?

Now we state the propositions:

(83) There exists a set a such that a /∈ U .

(84) There exists a subset A of U such that A /∈ U .

(85) the set of all u where u is an element of U is not an element of U .

(86) Let us consider an element X of U . Then U \X is not an element of U .
Proof: U \X /∈ U . �

(87) 2U /∈ U .

8. A Sequence of Universes

Now we state the proposition:

(88) Let us consider a set X. Then there exists a function f such that

(i) dom f = N, and

(ii) f(0) = X, and

(iii) for every natural number n, f(n+ 1) = GrothendieckUniverse(f(n)).
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Proof: Define G(set, set) = GrothendieckUniverse($2). There exists a func-
tion f such that dom f = N and f(0) = X and for every natural number
n, f(n+ 1) = G(n, f(n)). �

The Construction ofX,GrothendieckUniverse(X),GrothendieckUniverse
(GrothendieckUniverse(X)), . . . .
Let X be a set. The functor sequence-universe(X) yielding a function is

defined by

(Def. 9) dom it = N and it(0) = X and for every natural number n, it(n+ 1) =
GrothendieckUniverse(it(n)).

Now we state the propositions:

(89) Let us consider a set X. Then sequence-universe(X) is a transfinite se-
quence.

(90) Let us consider a set X, and a transfinite sequence S. If domS = N,
then lastS = S(N).

(91) Let us consider a transfinite sequence S. Suppose domS = N. Then

(i) S(N) = ∅, and

(ii) lastS = ∅.
The theorem is a consequence of (90).

(92) Let us consider a set X, and a transfinite sequence S. Suppose S =
sequence-universe(X). Then

(i) lastS = ∅, and

(ii) S(N) = ∅.
The theorem is a consequence of (91).

The Construction ofX∪GrothendieckUniverse(X)∪GrothendieckUnive-
rse(GrothendieckUniverse(X)) ∪ . . . .
Let X be a set. The functor union-sequence-universe(X) yielding a non emp-

ty set is defined by the term

(Def. 10)
⋃

rng sequence-universe(X).

Now we state the proposition:

(93) Let us consider a setX. Then rng sequence-universe(X) ⊆ union-sequence-
universe(X).

The Formal Counterpart of ∅(= U0) ∈ U1 ∈ U2 ∈ . . . : Sequence of uni-
verses indexed by the ordinal numbers (see 8. Examples, Grothendieck Universe
[24]).

The functor sequence-universe yielding a sequence of union-sequence-universe(∅)
is defined by the term

(Def. 11) sequence-universe(∅).



Non-trivial universes and sequences of universes 63

Now we state the propositions:

(94) ∅, U0, U1 ∈ rng sequence-universe. The theorem is a consequence of (45)
and (77).

(95)
⋃
n<ω Un is not a Universe:⋃

rng sequence-universe is not a Grothendieck. The theorem is a consequ-
ence of (72) and (94).

(96) (i) T(U0) = GrothendieckUniverse(U0), and

(ii) T(U1) = GrothendieckUniverse(U1).

(97) Let us consider a set X, and a natural number n. Then

(i) (sequence-universe(X))(n+ 1) is transitive, and

(ii) T((sequence-universe(X))(n+ 1)) =

GrothendieckUniverse((sequence-universe(X))(n+ 1)).

Let us consider a natural number n. Now we state the propositions:

(98) T((sequence-universe(U0))(n)) =
GrothendieckUniverse((sequence-universe(U0))(n)). The theorem is a con-
sequence of (77).

(99) Un ∈ Un+1.
(100) (sequence-universe(U0))(n) = Un.

Proof: Define P[natural number] ≡ (sequence-universe(U0))($1) = U$1 .
For every natural number k such that P[k] holds P[k+1]. For every natural
number k, P[k]. �

(101) GrothendieckUniverse((sequence-universe(∅))(n)) =
(sequence-universe(GrothendieckUniverse(∅)))(n).
Proof: Define P[natural number] ≡ GrothendieckUniverse((sequence-
universe(∅))($1)) = (sequence-universe(GrothendieckUniverse(∅)))($1).
P[0]. For every natural number k such that P[k] holds P[k+ 1]. For every
natural number k, P[k]. �

(102) (sequence-universe)(n+ 1) = Un. The theorem is a consequence of (46),
(100), and (101).

Let us note that there exists an element of
⋃

rng sequence-universe which is
non empty.

Now we state the propositions:

(103) U0, U1 ∈ GrothendieckUniverse(sequence-universe). The theorem is
a consequence of (45) and (77).

(104) Let us consider a natural number n. Then (sequence-universe)(n+ 1) ∈
GrothendieckUniverse(sequence-universe). The theorem is a consequence
of (45) and (102).
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The Construction of Uω: Tower of universes indexed by the ordinal
numbers (see 8. Examples, Grothendieck Universe [24]).

The functor Uω yielding a non trivial universal class is defined by the term

(Def. 12) GrothendieckUniverse(sequence-universe).

Now we state the proposition:

(105) Let us consider a natural number n. Then (sequence-universe)(n) ⊆
(sequence-universe)(n+ 1).
Proof: Define P[natural number] ≡ (sequence-universe)($1) ⊆ (sequence-
universe)($1 + 1). P[0]. For every natural number k such that P[k] holds
P[k + 1]. For every natural number n, P[n]. �

LetX be an element of
⋃

rng sequence-universe. The functor rank-universe(X)
yielding a natural number is defined by

(Def. 13) X ∈ (sequence-universe)(it) and for every natural number n such that
n < it holds X /∈ (sequence-universe)(n).

Now we state the propositions:

(106) Let us consider an element X of
⋃

rng sequence-universe, and a natural
number n. Suppose rank-universe(X) ¬ n.
Then X ∈ (sequence-universe)(n).
Proof: Define P[natural number] ≡ X ∈ (sequence-universe)($1). For
every natural number j such that rank-universe(X) ¬ j and P[j] holds
P[j+1]. For every natural number i such that rank-universe(X) ¬ i holds
P[i]. �

(107) Let us consider a natural number i. Then there exists a set x such that
x ∈ (sequence-universe)(i + 1) \ (sequence-universe)(i). The theorem is
a consequence of (105) and (102).

(108) Let us consider a natural number n. Then Un+1 \ (Un) /∈ Un+1. The
theorem is a consequence of (99) and (86).

The functor ComplUniverse yielding a function from N into
⋃

rng sequence-
universe is defined by

(Def. 14) for every natural number n, it(n) = Un+1 \ (Un).

Let us consider a natural number n. Now we state the propositions:

(109) (ComplUniverse)(n) is not empty. The theorem is a consequence of (99).

(110) (ComplUniverse)(n) ⊆ Un+1.
(111) There exists a function f from N into

⋃⋃
rng sequence-universe such

that for every natural number i, f(i) ∈ (ComplUniverse)(i).
Proof: Set g = the choice of ComplUniverse. rng g ⊆

⋃⋃
rng sequence-

universe. For every natural number i, g(i) ∈ (ComplUniverse)(i). �
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(112) Let us consider a function f from N into
⋃

rng sequence-universe. Then
f ∈ Uω. The theorem is a consequence of (13) and (104).

(113) Let us consider a function f from N into
⋃⋃

rng sequence-universe. Then
f ∈ Uω. The theorem is a consequence of (13) and (104).
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