REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/13658
Tytuł: Finite Dimensional Real Normed Spaces are Proper Metric Spaces
Autorzy: Nakasho, Kazuhisa
Okazaki, Hiroyuki
Shidama, Yasunari
Słowa kluczowe: real vector space
topological space
normed spaces
L1-norm
maximum norm
linear isometry
proper metric space
Data wydania: 2021
Data dodania: 22-lip-2022
Wydawca: DeGruyter Open
Źródło: Formalized Mathematics, Volume 29, Issue 4, Pages 175-184
Abstrakt: In this article, we formalize in Mizar [1], [2] the topological properties of finite-dimensional real normed spaces. In the first section, we formalize the Bolzano-Weierstrass theorem, which states that a bounded sequence of points in an n-dimensional Euclidean space has a certain subsequence that converges to a point. As a corollary, it is also shown the equivalence between a subset of an n-dimensional Euclidean space being compact and being closed and bounded. In the next section, we formalize the definitions of L1-norm (Manhattan Norm) and maximum norm and show their topological equivalence in n-dimensional Euclidean spaces and finite-dimensional real linear spaces. In the last section, we formalize the linear isometries and their topological properties. Namely, it is shown that a linear isometry between real normed spaces preserves properties such as continuity, the convergence of a sequence, openness, closeness, and compactness of subsets. Finally, it is shown that finite-dimensional real normed spaces are proper metric spaces. We referred to [5], [9], and [7] in the formalization.
Afiliacja: Kazuhisa Nakasho - Yamaguchi University, Yamaguchi, Japan
Hiroyuki Okazaki - Shinshu University, Nagano, Japan
Yasunari Shidama - Karuizawa Hotch 244-1, Nagano, Japan
URI: http://hdl.handle.net/11320/13658
DOI: 10.2478/forma-2021-0017
ISSN: 1426-2630
e-ISSN: 1898-9934
Typ Dokumentu: Article
metadata.dc.rights.uri: https://creativecommons.org/licenses/by-sa/3.0/
Właściciel praw: © 2021 University of Białymstoku
CC-BY-SA License ver. 3.0 or later
Występuje w kolekcji(ach):Formalized Mathematics, 2021, Volume 29, Issue 4

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2021-0017.pdf278,01 kBAdobe PDFOtwórz
Pokaż pełny widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons