REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/13658
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorNakasho, Kazuhisa-
dc.contributor.authorOkazaki, Hiroyuki-
dc.contributor.authorShidama, Yasunari-
dc.date.accessioned2022-07-22T10:15:36Z-
dc.date.available2022-07-22T10:15:36Z-
dc.date.issued2021-
dc.identifier.citationFormalized Mathematics, Volume 29, Issue 4, Pages 175-184pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/13658-
dc.description.abstractIn this article, we formalize in Mizar [1], [2] the topological properties of finite-dimensional real normed spaces. In the first section, we formalize the Bolzano-Weierstrass theorem, which states that a bounded sequence of points in an n-dimensional Euclidean space has a certain subsequence that converges to a point. As a corollary, it is also shown the equivalence between a subset of an n-dimensional Euclidean space being compact and being closed and bounded. In the next section, we formalize the definitions of L1-norm (Manhattan Norm) and maximum norm and show their topological equivalence in n-dimensional Euclidean spaces and finite-dimensional real linear spaces. In the last section, we formalize the linear isometries and their topological properties. Namely, it is shown that a linear isometry between real normed spaces preserves properties such as continuity, the convergence of a sequence, openness, closeness, and compactness of subsets. Finally, it is shown that finite-dimensional real normed spaces are proper metric spaces. We referred to [5], [9], and [7] in the formalization.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectreal vector spacepl
dc.subjecttopological spacepl
dc.subjectnormed spacespl
dc.subjectL1-normpl
dc.subjectmaximum normpl
dc.subjectlinear isometrypl
dc.subjectproper metric spacepl
dc.titleFinite Dimensional Real Normed Spaces are Proper Metric Spacespl
dc.typeArticlepl
dc.rights.holder© 2021 University of Białymstokupl
dc.rights.holderCC-BY-SA License ver. 3.0 or laterpl
dc.identifier.doi10.2478/forma-2021-0017-
dc.description.AffiliationKazuhisa Nakasho - Yamaguchi University, Yamaguchi, Japanpl
dc.description.AffiliationHiroyuki Okazaki - Shinshu University, Nagano, Japanpl
dc.description.AffiliationYasunari Shidama - Karuizawa Hotch 244-1, Nagano, Japanpl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesNoboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577–580, 2005.pl
dc.description.referencesHiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on normed linear spaces. Formalized Mathematics, 12(3):321–327, 2004.pl
dc.description.referencesMiyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.pl
dc.description.referencesRobert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339–345, 1996.pl
dc.description.referencesLaurent Schwartz. Theorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.pl
dc.description.referencesYasunari Shidama. Differentiable functions on normed linear spaces. Formalized Mathematics, 20(1):31–40, 2012. doi:10.2478/v10037-012-0005-1.pl
dc.description.referencesKosaku Yosida. Functional Analysis. Springer, 1980.pl
dc.identifier.eissn1898-9934-
dc.description.volume29pl
dc.description.issue4pl
dc.description.firstpage175pl
dc.description.lastpage184pl
dc.identifier.citation2Formalized Mathematicspl
Występuje w kolekcji(ach):Formalized Mathematics, 2021, Volume 29, Issue 4

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2021-0017.pdf278,01 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons