REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/13652
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorCoghetto, Roland-
dc.date.accessioned2022-07-22T09:31:14Z-
dc.date.available2022-07-22T09:31:14Z-
dc.date.issued2021-
dc.identifier.citationFormalized Mathematics, Volume 29, Issue 4, Pages 161-173pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/13652-
dc.descriptionThis work has been supported by the Centre autonome de formation et de recherche en mathematiques et sciences avec assistants de preuve, ASBL (non-profit organization). Enterprise number: 0777.779.751. Belgiumpl
dc.description.abstractIn this article, we check with the Mizar system [1], [2], the converse of Desargues’ theorem and the converse of Pappus’ theorem of the real projective plane. It is well known that in the projective plane, the notions of points and lines are dual [11], [9], [15], [8]. Some results (analytical, synthetic, combinatorial) of projective geometry are already present in some libraries Lean/Hott [5], Isabelle/Hol [3], Coq [13], [14], [4], Agda [6], . . . . Proofs of dual statements by proof assistants have already been proposed, using an axiomatic method (for example see in [13] - the section on duality: “[...] For every theorem we prove, we can easily derive its dual using our function swap [...]2”). In our formalisation, we use an analytical rather than a synthetic approach using the definitions of Leończuk and Prażmowski of the projective plane [12]. Our motivation is to show that it is possible by developing dual definitions to find proofs of dual theorems in a few lines of code. In the first part, rather technical, we introduce definitions that allow us to construct the duality between the points of the real projective plane and the lines associated to this projective plane. In the second part, we give a natural definition of line concurrency and prove that this definition is dual to the definition of alignment. Finally, we apply these results to find, in a few lines, the dual properties and theorems of those defined in the article [12] (transitive, Vebleian, at_least_3rank, Fanoian, Desarguesian, 2-dimensional). We hope that this methodology will allow us to continued more quickly the proof started in [7] that the Beltrami-Klein plane is a model satisfying the axioms of the hyperbolic plane (in the sense of Tarski geometry [10]).pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectPrinciple of Dualitypl
dc.subjectdualitypl
dc.subjectreal projective planepl
dc.subjectconverse theorempl
dc.titleDuality Notions in Real Projective Planepl
dc.typeArticlepl
dc.rights.holder© 2021 University of Białymstokupl
dc.rights.holderCC-BY-SA License ver. 3.0 or laterpl
dc.identifier.doi10.2478/forma-2021-0016-
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-817.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesAnthony Bordg. Projective geometry. Archive of Formal Proofs, jun 2018.pl
dc.description.referencesDavid Braun. Approche combinatoire pour l’automatisation en Coq des preuves formelles en g´eom´etrie d’incidence projective. PhD thesis, Universit´e de Strasbourg, 2019.pl
dc.description.referencesUlrik Buchholtz and Egbert Rijke. The real projective spaces in homotopy type theory. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–8. IEEE, 2017.pl
dc.description.referencesGuillermo Calderón. Formalizing constructive projective geometry in Agda. Electronic Notes in Theoretical Computer Science, 338:61–77, 2018.pl
dc.description.referencesRoland Coghetto. Klein-Beltrami model. Part I. Formalized Mathematics, 26(1):21–32, 2018. doi:10.2478/forma-2018-0003.pl
dc.description.referencesHarold Scott Macdonald Coxeter. The real projective plane. Springer Science & Business Media, 1992.pl
dc.description.referencesNikolai Vladimirovich Efimov. G´eom´etrie sup´erieure. Mir, 1981.pl
dc.description.referencesAdam Grabowski. Tarski’s geometry modelled in Mizar computerized proof assistant. In Proceedings of the 2016 Federated Conference on Computer Science and Information Systems, FedCSIS 2016, Gdańsk, Poland, September 11–14, 2016, pages 373–381, 2016. doi:10.15439/2016F290.pl
dc.description.referencesRobin Hartshorne. Foundations of projective geometry. Citeseer, 1967.pl
dc.description.referencesWojciech Leończuk and Krzysztof Prażmowski. Projective spaces – part I. Formalized Mathematics, 1(4):767–776, 1990.pl
dc.description.referencesNicolas Magaud, Julien Narboux, and Pascal Schreck. Formalizing projective plane geometry in Coq. In Automated Deduction in Geometry, pages 141–162. Springer, 2008.pl
dc.description.referencesNicolas Magaud, Julien Narboux, and Pascal Schreck. A case study in formalizing projective geometry in Coq: Desargues theorem. Computational Geometry, 45(8):406–424, 2012.pl
dc.description.referencesJurgen Richter-Gebert. Pappos’s Theorem: Nine Proofs and Three Variations, pages 3–31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi:10.1007/978-3-642-17286-1-1.pl
dc.identifier.eissn1898-9934-
dc.description.volume29pl
dc.description.issue4pl
dc.description.firstpage161pl
dc.description.lastpage173pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-4901-0766-
Występuje w kolekcji(ach):Formalized Mathematics, 2021, Volume 29, Issue 4

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2021-0016.pdf267,11 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons