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Duality Notions in Real Projective Plane1

Roland Coghetto
cafr-MSA2P asbl

Rue de la Brasserie 5
7100 La Louvière, Belgium

Summary. In this article, we check with the Mizar system [1], [2], the
converse of Desargues’ theorem and the converse of Pappus’ theorem of the re-
al projective plane. It is well known that in the projective plane, the notions
of points and lines are dual [11], [9], [15], [8]. Some results (analytical, synthe-
tic, combinatorial) of projective geometry are already present in some libraries
Lean/Hott [5], Isabelle/Hol [3], Coq [13], [14], [4], Agda [6], . . . .

Proofs of dual statements by proof assistants have already been proposed,
using an axiomatic method (for example see in [13] - the section on duality: “[...]
For every theorem we prove, we can easily derive its dual using our function swap
[...]2”).

In our formalisation, we use an analytical rather than a synthetic approach
using the definitions of Leończuk and Prażmowski of the projective plane [12].
Our motivation is to show that it is possible by developing dual definitions to
find proofs of dual theorems in a few lines of code.

In the first part, rather technical, we introduce definitions that allow us to
construct the duality between the points of the real projective plane and the
lines associated to this projective plane. In the second part, we give a natural
definition of line concurrency and prove that this definition is dual to the defi-
nition of alignment. Finally, we apply these results to find, in a few lines, the
dual properties and theorems of those defined in the article [12] (transitive,
Vebleian, at_least_3rank, Fanoian, Desarguesian, 2-dimensional).

We hope that this methodology will allow us to continued more quickly the
proof started in [7] that the Beltrami-Klein plane is a model satisfying the axioms
of the hyperbolic plane (in the sense of Tarski geometry [10]).

1This work has been supported by the Centre autonome de formation et de recherche en
mathématiques et sciences avec assistants de preuve, ASBL (non-profit organization). Enter-
prise number: 0777.779.751. Belgium.
2https://github.com/coq-contribs/projective-geometry
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1. Preliminaries

Now we state the proposition:

(1) Let us consider real numbers a, b, c, d, e, f , g, h, i. Then 〈|[a, b, c], [d, e,
f ], [g, h, i]|〉 = a · e · i+ b · f · g + c · d · h− g · e · c− h · f · a− i · d · b.

Let us consider real numbers a, b, c, d, e. Now we state the propositions:

(2) 〈|[a, 1, 0], [b, 0, 1], [c, d, e]|〉 = c− a · d− e · b.
(3) 〈|[1, a, 0], [0, b, 1], [c, d, e]|〉 = b · e+ a · c− d.

(4) 〈|[1, 0, a], [0, 1, b], [c, d, e]|〉 = e− c · a− d · b.
(5) Let us consider an element u of E3T. Then u is zero if and only if |(u, u)| =

0.

Let us consider non zero elements u, v, w of E3T. Now we state the proposi-
tions:

(6) If 〈|u, v, w|〉 = 0, then there exists a non zero element p of E3T such that
|(p, u)| = 0 and |(p, v)| = 0 and |(p, w)| = 0.

(7) If |(u, v)| = 0 and w and v are proportional, then |(u,w)| = 0.

(8) Let us consider non zero elements a, u, v of E3T. Suppose u and v are
not proportional and |(a, u)| = 0 and |(a, v)| = 0. Then a and u × v are
proportional.

(9) Let us consider non zero elements u, v of E3T, and a real number r. If
r 6= 0 and u and v are proportional, then r · u and v are proportional.

2. Dual of a Point - Dual of a Line

Let P be a point of the projective space over E3T. We say that P is π1-zero
if and only if

(Def. 1) for every non zero element u of E3T such that P = the direction of u holds
u(1) = 0.

Note that there exists a point of the projective space over E3T which is π1-zero
and there exists a point of the projective space over E3T which is non π1-zero.

Now we state the proposition:

(10) Let us consider a non π1-zero point P of the projective space over E3T,
and a non zero element u of E3T. If P = the direction of u, then u(1) 6= 0.

http://zbmath.org/classification/?q=cc:51A05
http://zbmath.org/classification/?q=cc:51N15
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/anproj11.miz
http://ftp.mizar.org/
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Let P be a non π1-zero point of the projective space over E3T. The functor
π̃1(P ) yielding a non zero element of E3T is defined by

(Def. 2) the direction of it = P and it(1) = 1.

Now we state the propositions:

(11) Let us consider a non π1-zero point P of the projective space over E3T,
and a non zero element u of E3T. Suppose P = the direction of u. Then
π̃1(P ) = [1, u(2)u(1) ,

u(3)
u(1) ].

(12) Let us consider a non π1-zero point P of the projective space over E3T,
and a point Q of the projective space over E3T. Suppose Q = the direction
of π̃1(P ). Then Q is not π1-zero.

Let P be a point of the projective space over E3T. We say that P is π2-zero
if and only if

(Def. 3) for every non zero element u of E3T such that P = the direction of u holds
u(2) = 0.

One can verify that there exists a point of the projective space over E3T which
is π2-zero and there exists a point of the projective space over E3T which is non
π2-zero.

Now we state the proposition:

(13) Let us consider a non π2-zero point P of the projective space over E3T,
and a non zero element u of E3T. If P = the direction of u, then u(2) 6= 0.

Let P be a non π2-zero point of the projective space over E3T. The functor
π̃2(P ) yielding a non zero element of E3T is defined by

(Def. 4) the direction of it = P and it(2) = 1.

Now we state the propositions:

(14) Let us consider a non π2-zero point P of the projective space over E3T,
and a non zero element u of E3T. Suppose P = the direction of u. Then
π̃2(P ) = [u(1)u(2) , 1,

u(3)
u(2) ].

(15) Let us consider a non π2-zero point P of the projective space over E3T,
and a point Q of the projective space over E3T. Suppose Q = the direction
of π̃2(P ). Then Q is not π2-zero.

Let P be a point of the projective space over E3T. We say that P is π3-zero
if and only if

(Def. 5) for every non zero element u of E3T such that P = the direction of u holds
u(3) = 0.

Observe that there exists a point of the projective space over E3T which is
π3-zero and there exists a point of the projective space over E3T which is non
π3-zero.



164 roland coghetto

Now we state the proposition:

(16) Let us consider a non π3-zero point P of the projective space over E3T,
and a non zero element u of E3T. If P = the direction of u, then u(3) 6= 0.

Let P be a non π3-zero point of the projective space over E3T. The functor
π̃3(P ) yielding a non zero element of E3T is defined by

(Def. 6) the direction of it = P and it(3) = 1.

Now we state the propositions:

(17) Let us consider a non π3-zero point P of the projective space over E3T,
and a non zero element u of E3T. Suppose P = the direction of u. Then
π̃3(P ) = [u(1)u(3) ,

u(2)
u(3) , 1].

(18) Let us consider a non π3-zero point P of the projective space over E3T,
and a point Q of the projective space over E3T. Suppose Q = the direction
of π̃3(P ). Then Q is not π3-zero.

Let us observe that there exists a point of the projective space over E3T
which is non π1-zero and non π2-zero and there exists a point of the projective
space over E3T which is non π1-zero and non π3-zero and there exists a point of
the projective space over E3T which is non π2-zero and non π3-zero and there
exists a point of the projective space over E3T which is non π1-zero, non π2-zero,
and non π3-zero.

Let P be a non π1-zero point of the projective space over E3T. The functor
dir(−π̃1)2,1,0(P ) yielding a non zero element of E3T is defined by the term

(Def. 7) [−(π̃1(P ))(2), 1, 0].

The functor Pdir(−π̃1)2,1,0(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 8) the direction of dir(−π̃1)2,1,0(P ).

The functor dir(−π̃1)3,0,1(P ) yielding a non zero element of E3T is defined by
the term

(Def. 9) [−(π̃1(P ))(3), 0, 1].

The functor Pdir(−π̃1)3,0,1(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 10) the direction of dir(−π̃1)3,0,1(P ).

Let us consider a non π1-zero point P of the projective space over E3T. Now
we state the propositions:

(19) dir(−π̃1)2,1,0(P ) 6= dir(−π̃1)3,0,1(P ).

(20) The direction of dir(−π̃1)2,1,0(P ) 6= the direction of dir(−π̃1)3,0,1(P ).

(21) Let us consider a non π1-zero element P of the projective space over
E3T, a non zero element u of E3T, and an element v of E3T. Suppose u =
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π̃1(P ). Then 〈|dir(−π̃1)2,1,0(P ), dir(−π̃1)3,0,1(P ), v|〉 = |(u, v)|. The theorem
is a consequence of (11) and (2).

(22) Let us consider a non π1-zero element P of the projective space over E3T,
and a non zero element u of E3T. Suppose u = π̃1(P ). Then 〈|dir(−π̃1)2,1,0(P ),
dir(−π̃1)3,0,1(P ), π̃1(P )|〉 = 1 + u(2) · u(2) + u(3) · u(3). The theorem is
a consequence of (21).

Let P be a non π2-zero point of the projective space over E3T. The functor
dir1,(−π̃2)1,0(P ) yielding a non zero element of E3T is defined by the term

(Def. 11) [1,−(π̃2(P ))(1), 0].

The functor Pdir1,(−π̃2)1,0(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 12) the direction of dir1,(−π̃2)1,0(P ).

The functor dir0,(−π̃2)3,1(P ) yielding a non zero element of E3T is defined by
the term

(Def. 13) [0,−(π̃2(P ))(3), 1].

The functor Pdir0,(−π̃2)3,1(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 14) the direction of dir0,(−π̃2)3,1(P ).

Let us consider a non π2-zero point P of the projective space over E3T. Now
we state the propositions:

(23) dir1,(−π̃2)1,0(P ) 6= dir0,(−π̃2)3,1(P ).

(24) The direction of dir1,(−π̃2)1,0(P ) 6= the direction of dir0,(−π̃2)3,1(P ).

(25) Let us consider a non π2-zero element P of the projective space over E3T,
a non zero element u of E3T, and an element v of E3T. Suppose u = π̃2(P ).
Then 〈|dir1,(−π̃2)1,0(P ),dir0,(−π̃2)3,1(P ), v|〉 = −|(u, v)|. The theorem is
a consequence of (14) and (3).

(26) Let us consider a non π2-zero element P of the projective space over E3T,
and a non zero element u of E3T. Suppose u = π̃2(P ). Then 〈|dir1,(−π̃2)1,0(P ),
dir0,(−π̃2)3,1(P ), π̃2(P )|〉 = −(u(1) · u(1) + 1 + u(3) · u(3)). The theorem is
a consequence of (25).

Let P be a non π3-zero point of the projective space over E3T. The functor
dir1,0,(−π̃3)1(P ) yielding a non zero element of E3T is defined by the term

(Def. 15) [1, 0,−(π̃3(P ))(1)].

The functor Pdir1,0,(−π̃3)1(P ) yielding a point of the projective space over
E3T is defined by the term

(Def. 16) the direction of dir1,0,(−π̃3)1(P ).
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The functor dir1,0,(−π̃3)2(P ) yielding a non zero element of E3T is defined by
the term

(Def. 17) [0, 1,−(π̃3(P ))(2)].

The functor Pdir1,0,(−π̃3)2(P yielding a point of the projective space over E3T
is defined by the term

(Def. 18) the direction of dir1,0,(−π̃3)2(P ).

Let us consider a non π3-zero point P of the projective space over E3T. Now
we state the propositions:

(27) dir1,0,(−π̃3)1(P ) 6= dir1,0,(−π̃3)2(P ).

(28) The direction of dir1,0,(−π̃3)1(P ) 6= the direction of dir1,0,(−π̃3)2(P ).

(29) Let us consider a non π3-zero element P of the projective space over
E3T, a non zero element u of E3T, and an element v of E3T. Suppose u =
π̃3(P ). Then 〈|dir1,0,(−π̃3)1(P ), dir1,0,(−π̃3)2(P ), v|〉 = |(u, v)|. The theorem
is a consequence of (17) and (4).

(30) Let us consider a non π3-zero element P of the projective space over E3T,
and a non zero element u of E3T. Suppose u = π̃3(P ). Then 〈|dir1,0,(−π̃3)1(P ),
dir1,0,(−π̃3)2(P ), π̃3(P )|〉 = u(1) · u(1) + u(2) · u(2) + 1. The theorem is
a consequence of (29).

Let P be a non π1-zero point of the projective space over E3T. The functor
dual1(P ) yielding an element of L(the real projective plane) is defined by the
term

(Def. 19) Line(Pdir(−π̃1)2,1,0(P ),Pdir(−π̃1)3,0,1(P )).

Let P be a non π2-zero point of the projective space over E3T. The functor
dual2(P ) yielding an element of L(the real projective plane) is defined by the
term

(Def. 20) Line(Pdir1,(−π̃2)1,0(P ),Pdir0,(−π̃2)3,1(P )).

Let P be a non π3-zero point of the projective space over E3T. The functor
dual3(P ) yielding an element of L(the real projective plane) is defined by the
term

(Def. 21) Line(Pdir1,0,(−π̃3)1(P ),Pdir1,0,(−π̃3)2(P ).

Let us consider a non π1-zero, non π2-zero point P of the projective space
over E3T and a non zero element u of E3T. Now we state the propositions:

(31) Suppose P = the direction of u. Then

(i) π̃1(P ) = [1, u(2)u(1) ,
u(3)
u(1) ], and

(ii) π̃2(P ) = [u(1)u(2) , 1,
u(3)
u(2) ].

(32) Suppose P = the direction of u. Then
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(i) π̃1(P ) = u(2)
u(1) · (π̃2(P )), and

(ii) π̃2(P ) = u(1)
u(2) · (π̃1(P )).

The theorem is a consequence of (10), (13), (11), and (14).

Let us consider a non π1-zero, non π2-zero point P of the projective space
over E3T. Now we state the propositions:

(33) dual1(P ) = dual2(P ). The theorem is a consequence of (11), (14), (2),
(10), (3), and (13).

(34) dual2(P ) = dual3(P ). The theorem is a consequence of (17), (14), (3),
(13), (16), and (4).

(35) dual1(P ) = dual3(P ). The theorem is a consequence of (11), (17), (2),
(10), (4), and (16).

(36) Let us consider a non π1-zero, non π2-zero, non π3-zero point P of
the projective space over E3T. Then

(i) dual1(P ) = dual2(P ), and

(ii) dual1(P ) = dual3(P ), and

(iii) dual2(P ) = dual3(P ).

(37) Every element of the projective space over E3T is non π1-zero or non
π2-zero or non π3-zero non π1-zero non π2-zero or non π3-zero.

Let P be a point of the projective space over E3T. The functor dualP yielding
an element of L(the real projective plane) is defined by

(Def. 22) (i) there exists a non π1-zero point P ′ of the projective space over E3T
such that P ′ = P and it = dual1(P ′), if P is not π1-zero,

(ii) there exists a non π2-zero point P ′ of the projective space over E3T
such that P ′ = P and it = dual2(P ′), if P is π1-zero and non π2-zero,

(iii) there exists a non π3-zero point P ′ of the projective space over E3T
such that P ′ = P and it = dual3(P ′), if P is π1-zero, π2-zero, and
non π3-zero.

Let P be a point of the real projective plane. The functor #P yielding
an element of the projective space over E3T is defined by the term

(Def. 23) P .

The functor dualP yielding an element of L(the real projective plane) is
defined by the term

(Def. 24) dual #P .

Let us consider an element P of the real projective plane. Now we state the
propositions:
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(38) Suppose #P is not π1-zero. Then there exists a non π1-zero point P ′ of
the projective space over E3T such that

(i) P = P ′, and

(ii) dualP = dual1(P ′).

(39) Suppose #P is not π2-zero. Then there exists a non π2-zero point P ′ of
the projective space over E3T such that

(i) P = P ′, and

(ii) dualP = dual2(P ′).

The theorem is a consequence of (33).

(40) Suppose #P is not π3-zero. Then there exists a non π3-zero point P ′ of
the projective space over E3T such that

(i) P = P ′, and

(ii) dualP = dual3(P ′).

The theorem is a consequence of (34) and (35).

Let us consider a non π1-zero element P of the projective space over E3T.
Now we state the propositions:

(41) P /∈ Line(Pdir(−π̃1)2,1,0(P ),Pdir(−π̃1)3,0,1(P )). The theorem is a consequ-
ence of (21) and (5).

(42) P /∈ Line(Pdir1,(−π̃2)1,0(P ),Pdir0,(−π̃2)3,1(P )). The theorem is a consequ-
ence of (25) and (5).

(43) P /∈ Line(Pdir1,0,(−π̃3)1(P ),Pdir1,0,(−π̃3)2(P ). The theorem is a consequ-
ence of (29) and (5).

(44) Let us consider a point P of the real projective plane. Then P /∈ dualP .
The theorem is a consequence of (37), (38), (41), (39), (42), (40), and (43).

Let l be an element of L(the real projective plane). The functor dual l yiel-
ding a point of the real projective plane is defined by

(Def. 25) there exist points P , Q of the real projective plane such that P 6= Q and
l = Line(P,Q) and it = L2P(P,Q).

Now we state the propositions:

(45) Let us consider a point P of the real projective plane. Then dual dualP =
P . The theorem is a consequence of (37), (38), (11), (10), (8), (9), (39),
(14), (13), (40), (17), and (16).

(46) Let us consider an element l of L(the real projective plane).
Then dual dual l = l. The theorem is a consequence of (37), (38), (10),
(11), (20), (2), (39), (13), (14), (24), (3), (40), (16), (17), (28), and (4).
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(47) Let us consider points P , Q of the real projective plane. Then P 6= Q if
and only if dualP 6= dualQ. The theorem is a consequence of (45).

(48) Let us consider elements l, m of L(the real projective plane). Then l 6= m

if and only if dual l 6= dualm. The theorem is a consequence of (46).

3. Two Dual Notions: Concurrency and Collinearity

Let l1, l2, l3 be elements of L(the real projective plane). We say that l1, l2,
l3 are concurrent if and only if

(Def. 26) there exists a point P of the real projective plane such that P ∈ l1 and
P ∈ l2 and P ∈ l3.

Let l be an element of L(the real projective plane). The functor # l yielding
a line of Inc-ProjSp(the real projective plane) is defined by the term

(Def. 27) l.

Let l be a line of Inc-ProjSp(the real projective plane). The functor # l

yielding an element of L(the real projective plane) is defined by the term

(Def. 28) l.

Now we state the propositions:

(49) Let us consider elements l1, l2, l3 of L(the real projective plane). Then
l1, l2, l3 are concurrent if and only if # l1, # l2, # l3 are concurrent.

(50) Let us consider lines l1, l2, l3 of Inc-ProjSp(the real projective plane).
Then l1, l2, l3 are concurrent if and only if # l1, # l2, # l3 are concurrent.
The theorem is a consequence of (49).

(51) Let us consider elements P , Q, R of the real projective plane. Suppose
P , Q and R are collinear. Then

(i) Q, R and P are collinear, and

(ii) R, P and Q are collinear, and

(iii) P , R and Q are collinear, and

(iv) R, Q and P are collinear, and

(v) Q, P and R are collinear.

(52) Let us consider elements l1, l2, l3 of L(the real projective plane). Suppose
l1, l2, l3 are concurrent. Then

(i) l2, l1, l3 are concurrent, and

(ii) l1, l3, l2 are concurrent, and

(iii) l3, l2, l1 are concurrent, and
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(iv) l3, l2, l1 are concurrent, and

(v) l2, l3, l1 are concurrent.

(53) Let us consider points P , Q of the real projective plane, and elements
P ′, Q′ of the projective space over E3T. If P = P ′ and Q = Q′, then
Line(P,Q) = Line(P ′, Q′).

Let us consider a point P of the real projective plane and an element l of
L(the real projective plane). Now we state the propositions:

(54) If P ∈ l, then dual l ∈ dualP . The theorem is a consequence of (37),
(38), (21), (7), (39), (25), (40), and (29).

(55) If dual l ∈ dualP , then P ∈ l. The theorem is a consequence of (54),
(45), and (46).

(56) Let us consider points P , Q, R of the real projective plane. Suppose P ,
Q and R are collinear. Then dualP , dualQ, dualR are concurrent. The
theorem is a consequence of (54).

(57) Let us consider an element l of L(the real projective plane), and points
P , Q, R of the real projective plane. If P , Q, R ∈ l, then P , Q and R are
collinear.

(58) Let us consider elements l1, l2, l3 of L(the real projective plane). Suppose
l1, l2, l3 are concurrent. Then dual l1, dual l2 and dual l3 are collinear. The
theorem is a consequence of (54) and (57).

(59) Let us consider points P , Q, R of the real projective plane. Then P , Q
and R are collinear if and only if dualP , dualQ, dualR are concurrent.
The theorem is a consequence of (56), (58), and (45).

(60) Let us consider elements l1, l2, l3 of L(the real projective plane). Then l1,
l2, l3 are concurrent if and only if dual l1, dual l2 and dual l3 are collinear.
The theorem is a consequence of (46) and (59).

4. Some Dual Properties of a Real Projective Plane

Now we state the propositions:

(61) The real projective plane is reflexive, transitive, Vebleian, at least 3 rank,
Fanoian, Desarguesian, Pappian, and 2-dimensional.

(62) Converse reflexive:
Let us consider elements l, m, n of L(the real projective plane). Then

(i) l, m, l are concurrent, and

(ii) l, l, m are concurrent, and

(iii) l, m, m are concurrent.
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The theorem is a consequence of (59) and (46).

(63) Converse transitive:
Let us consider elements l, m, n, n1, n2 of L(the real projective plane).
Suppose l 6= m and l, m, n are concurrent and l, m, n1 are concurrent
and l, m, n2 are concurrent. Then n, n1, n2 are concurrent. The theorem
is a consequence of (60), (48), (59), and (46).

(64) Converse Vebliean:
Let us consider elements l, l1, l2, n, n1 of L(the real projective plane).
Suppose l, l1, n are concurrent and l1, l2, n1 are concurrent. Then there
exists an element n2 of L(the real projective plane) such that

(i) l, l2, n2 are concurrent, and

(ii) n, n1, n2 are concurrent.

The theorem is a consequence of (60), (59), and (46).

(65) Converse at least 3-rank:
Let us consider elements l, m of L(the real projective plane). Then there
exists an element n of L(the real projective plane) such that

(i) l 6= n, and

(ii) m 6= n, and

(iii) l, m, n are concurrent.

The theorem is a consequence of (45), (59), and (46).

(66) Converse Fanoian:
Let us consider elements l1, n2, m, n1, m1, l, n of L(the real projective
plane). Suppose l1, n2, m are concurrent and n1, m1, m are concurrent
and l1, n1, l are concurrent and n2, m1, l are concurrent and l1, m1, n are
concurrent and n2, n1, n are concurrent and l, m, n are concurrent. Then

(i) l1, n2, m1 are concurrent, or

(ii) l1, n2, n1 are concurrent, or

(iii) l1, n1, m1 are concurrent, or

(iv) n2, n1, m1 are concurrent.

The theorem is a consequence of (60).

(67) Converse Desarguesian:
Let us consider elements k, l1, l2, l3, m1, m2, m3, n1, n2, n3 of L(the real
projective plane). Suppose k 6= m1 and l1 6= m1 and k 6= m2 and l2 6= m2
and k 6= m3 and l3 6= m3 and k, l1, l2 are not concurrent and k, l1, l3 are
not concurrent and k, l2, l3 are not concurrent and l1, l2, n3 are concurrent
and m1, m2, n3 are concurrent and l2, l3, n1 are concurrent and m2, m3, n1
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are concurrent and l1, l3, n2 are concurrent and m1, m3, n2 are concurrent
and k, l1, m1 are concurrent and k, l2, m2 are concurrent and k, l3, m3 are
concurrent. Then n1, n2, n3 are concurrent. The theorem is a consequence
of (48) and (60).

(68) Converse Pappian:
Let us consider elements k, l1, l2, l3, m1, m2, m3, n1, n2, n3 of L(the real
projective plane). Suppose k 6= l2 and k 6= l3 and l2 6= l3 and l1 6= l2
and l1 6= l3 and k 6= m2 and k 6= m3 and m2 6= m3 and m1 6= m2 and
m1 6= m3 and k, l1, m1 are not concurrent and k, l1, l2 are concurrent and
k, l1, l3 are concurrent and k, m1, m2 are concurrent and k, m1, m3 are
concurrent and l1, m2, n3 are concurrent and m1, l2, n3 are concurrent and
l1, m3, n2 are concurrent and l3, m1, n2 are concurrent and l2, m3, n1 are
concurrent and l3, m2, n1 are concurrent. Then n1, n2, n3 are concurrent.
The theorem is a consequence of (48) and (60).

(69) Converse 2-dimensional:
Let us consider elements l, l1, m, m1 of L(the real projective plane). Then
there exists an element n of L(the real projective plane) such that

(i) l, l1, n are concurrent, and

(ii) m, m1, n are concurrent.

The theorem is a consequence of (59) and (46).
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en géométrie d’incidence projective. PhD thesis, Université de Strasbourg, 2019.
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