REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/13487
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorBajguz, Andrzej-
dc.date.accessioned2022-06-25T11:23:22Z-
dc.date.available2022-06-25T11:23:22Z-
dc.date.issued2007-
dc.identifier.isbn978-83-7431-130-4-
dc.identifier.urihttp://hdl.handle.net/11320/13487-
dc.descriptionZdigitalizowano i udostępniono w ramach projektu pn. Rozbudowa otwartych zasobów naukowych Repozytorium Uniwersytetu w Białymstoku, dofinansowanego z programu „Społeczna odpowiedzialność nauki” Ministra Edukacji i Nauki na podstawie umowy SONB/SP/512497/2021.pl
dc.description.sponsorshipWydanie publikacji sfinansowane przez JM Rektora Uniwersytetu w Białymstokupl
dc.language.isoplpl
dc.publisherWydawnictwo Uniwersytetu w Białymstokupl
dc.titleWpływ brassinosteroidów na kultury glonu Chlorella vulgaris poddane działaniu wybranych fitohormonów i czynników stresowychpl
dc.typeBookpl
dc.rights.holderCopyright by Uniwersytet w Białymstokupl
dc.description.referencesAhmad l., Hamid T., Fatima M., Chand H. S., Jain S. K., Athar M., Raisuddin S. (2000). Induction of hepatic antioxidants in freshwater catfish (Channa punctuatus Bloch) is a biomarker of paper mill effluent exposure. Bioch. Biophys. Acta 1523: 37-48.pl
dc.description.referencesAlmeida J. M., Fidalgo F., Confraria A., Santos A., Pires H., Santos l. (2005). Effect of hydrogen peroxide on catalase gene expression, isoform activities and levels in leaves of potato sprayed with homobrassinolide and ultrastructural changes in mesophyll cells. Funct. Plant. Biol. 32: 707-720.pl
dc.description.referencesApel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol. 55: 373-399.pl
dc.description.referencesArteca R. N., Bachman J. M., Mandava N. B. (1988). Effects of indole-3-acetic acid and brassinosteroid on ethylene biosynthesis in etiolated mung bean hypocotyl segments. J. Plant Physiol. 133: 430-435.pl
dc.description.referencesArteca R. N., Tsai D-S., Schlagnhaufer C., Mandava N. B. (1983). The effect of brassinosteroid on auxin-induced ethylene production by etiolated mung bean segments. Physiol. Plant. 59: 539-544.pl
dc.description.referencesAsami T., Min Y. K., Nagata N., Yamagishi K., Takatsuto S., Fujioka S., Murofushi N., Yamaguchi l., Yoshida S. (2000). Characterization of brassinazole, a triazoletype brassinosteroid biosynthesis inhibitor. Plant Physiol. 123: 93-99.pl
dc.description.referencesAsami T., Yoshida S. (1999). Brassinosteroid biosynthesis inhibitors. Trends Plant Sci. 4: 348 -353.pl
dc.description.referencesAzpiroz R., Wu Y., LoCascio J. C., Feldmann K. A. (1998). An Arabidopsis brassinosteroiddependent mutant is blocked in celI elongation. Plant Cell 10: 219-230.pl
dc.description.referencesBajguz A. (1997). Zależność między strukturą chemiczną i aktywnością biologiczną brassinosteroidów w glonie Chlorella vulgaris. Uniwersytet Warszawski, Filia w Białymstoku. Praca doktorska.pl
dc.description.referencesBajguz A. (1999). Działanie brassinosteroidów na wzrost i rozwój roślin. Kosmos 48: 75-85.pl
dc.description.referencesBajguz A. (2000a). Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol. Biochem. 38: 209-215.pl
dc.description.referencesBajguz A. (2000b). Blockade of heavy metais accumulation in Chlorella vulgaris cells by 24-epibrassinolide. Plant Physiol. Biochem. 38: 797-801.pl
dc.description.referencesBajguz A. (2000c). Ekdysteroidy W roślinach. Kosmos 49: 169-178.pl
dc.description.referencesBajguz A. (2002). Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J . Plant Physiol. 159: 321-324.pl
dc.description.referencesBajguz A. (2005). Brassinosteroids: from distribution to metabolism in plants. [W:) Sharma S. K., Govil J. N., Singh V.K. (red.). Recent Progress in Medicinal Plants. Vol. 10. Phytotherapeutics. Studium Press LLC, Houston, s. 25-63.pl
dc.description.referencesBajguz A. (2007). Metabolism of brassinosteroids in plants. Plant Physiol. Biochem. 45: 95-107.pl
dc.description.referencesBajguz A., Asami T. (2004). Effects of brassinazole, an inhibitor of brassinosteroid biosynthesis, on light- and dark-grown Chlorella vulgaris. Planta 218: 869-877.pl
dc.description.referencesBajguz A., Asami T. (2005). Suppression of Wolffia arrhiza growth by brassinazole, an inhibitor of brassinosteroid biosynthesis and its restoration by endogenous 24-epibrassinolide. Phytochemistry 66: 1787-1796.pl
dc.description.referencesBajguz A., Czerpak R. (1996). Effect of brassinosteroids on growth and proton extrusion in the alga Chlorella vulgaris Beijerinck (Chlorophyceae). J. Plant Growth Regul. 15: 153-156.pl
dc.description.referencesBajguz A., Czerpak R. (1998). Physiological and biochemical role of brassinosteroids and their structure-activity relationship in the green alga Chlorella vulgaris Beijerinck (Chlorophyceae). J. Plant Growth Regul. 17: 131-139.pl
dc.description.referencesBajguz A., Dinan L. (2004). Effects of ecdysteroids on Chlorella vulgaris. Physiol. Plant. 121: 349-357.pl
dc.description.referencesBajguz A., Godlewska-Zylkiewicz B. (2004). Protective role of 20 -hydroxyecdysone against lead stress in Chlorella vulgaris cultures. Phytochemistry 65: 711-720.pl
dc.description.referencesBajguz A., Tretyn A. (2003a). Brassinosteroidy - hormony roślinne. Wyd. UMK, Toruń.pl
dc.description.referencesBajguz A., Tretyn A. (2003b). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62: 1027-1046.pl
dc.description.referencesBaldi B. G., Maher B . R., Slovin J. P., Cohen J. D. (1991). Stable isotope labeling, in vivo, of D - and L-tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiol. 95: 1203-1208.pl
dc.description.referencesBaranowska-Morek A. (2003). Roślinne mechanizmy tolerancji na toksyczne działanie metali ciężkich. Kosmos 52: 283-298.pl
dc.description.referencesBarbarino E., Lourenço S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J. Appl. Phycol. 17: 447-460.pl
dc.description.referencesBarciszewski J., Siboska G., Clark B . F. C., Rattan S. I. S. (2000). Cytokinin formation by oxidative metabolism. J. Plant Physiol. 158: 587-588.pl
dc.description.referencesBarnes S. A., McGrath R. B., Chua N.-H. (1997). Light signal transduction in plants. Trends Cell. BioI. 7: 21-26.pl
dc.description.referencesBartel B., LeClere S., Magidin M., Zolman B. K. (2001). Inputs to the active indole-3-acetic acid pool: de nova synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. J. Plant Growth Regul. 20: 198-216.pl
dc.description.referencesBartosz G. (2006). Druga twarz tlenu. Wolne rodniki w przyrodzie. Wyd. Naukowe PWN, Warszawa.pl
dc.description.referencesBecerril J. M., Munoz-Rueda A., Aparicio-Tejo P., Gonzales-Murua C. (1988). The effects of cadmium and lead on photosynthetic electron transport in clover and lucerne. Plant Physiol. Biochem. 26: 357-363.pl
dc.description.referencesBecker E. W. (1994). Microalgal biotechnology and microbiology. Cambridge Acad. Publ., London.pl
dc.description.referencesBedell G. W., Darnall D. W. (1990). Immobilization of nonviable, biosorbent, algal biomas s for the recovery of metal ions. [W:] Volesky B. (red.). Biosorption of heavy metais. CRS Press, Boca Raton, s. 313-326.pl
dc.description.referencesBilgrami K . S., Kumar S. (1997). Effects of copper, lead and zinc on phytoplankton growth. Biol. Plant. 39: 315-317.pl
dc.description.referencesBinns A. N. (1994). Cytokinin accumulation and action: biochemical, genetic and molecular approaches. Annu. Rev. Plant PhysioI. Plant Mol . Biol. 45: 173-196.pl
dc.description.referencesBishop G. J., Nomura T., Yokota T., Harrison K., Noguchi T., Fujioka S., Takatsuto S., Jones J. D. G., Kamiya Y. (1999). The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc. Natl. Acad. Sci. USA 96: 1761-1766.pl
dc.description.referencesBohnert H. J., Nelson D. E., Jensen R. G. (1995). Adaptations to environmental stresses. Plant Cell 7: 1099-1111.pl
dc.description.referencesBraun P., Wild A. (1984). The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J. Plant Physiol. 116 : 189-196.pl
dc.description.referencesBray E. A., Bailey-Serres J., Weretilnyk E. (2000). Responses to abiotic stresses. [W:] Buchanan B., Gruissem W., Jones R. (red.). Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, s. 1158-1203.pl
dc.description.referencesBrosa C. (1999). Biological effects of brassinolide. Crit. Rev. Biochem. Mol. Biol. 34: 339-358.pl
dc.description.referencesBurzyński M. (1987). Wpływ ołowiu na procesy fizjologiczne roślin. Wiad. Bot. 31: 87-96.pl
dc.description.referencesCakmak L, Horst W. J. (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83: 463-468.pl
dc.description.referencesCampanoni P., Nick P. (2005). Auxin-dependent cell division and cell elongation. 1-Naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid activate different pathways. Plant Physiol. 1 37: 939-948.pl
dc.description.referencesCanter-Lund H., Lund J. W. G. (1996). Freshwater algae. Their microscopic world explored. BioPress, Hong-Kong.pl
dc.description.referencesCao H., Chen S. (1995). Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic acid and ethylene. Plant Growth Regul. 16: 189-196.pl
dc.description.referencesCarr H. P., Carińo F. A., Yang M. S., Wong M. H. (1998). Characterization of the cadmium-binding capacity of Chlorella vulgaris. Bull. Environ. Contam. Toxicol. 60: 433-440.pl
dc.description.referencesCatterou M., Dubois F., Schaller H., Aubanelle L., Vilcot B., Sangwan-Norreel B. S., Sangwan R. S. (2001a). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. I. Molecular, cellular and physiological characterization of the Arabidopsis bull mutant, defective in the Δ7-sterol-C5-desaturation step leading to brassinosteroid biosynthesis. Planta 212: 659-672.pl
dc.description.referencesCatterou M., Dubois F., Schaller H., Aubanelle L., Vilcot B., Sangwan-Norreel B. S., Sangwan R. S. (2001b). Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana. II. Effects of brassinosteroids on microtubules and cell elongation in the bull mutant. Planta 212: 673-683.pl
dc.description.referencesCerana R., Bonetti A., Marre M. T., Romani G., Marre E. (1983). Effects of a brassinosteroid on growth and electrogenic proton extrusion in Azuki bean epicotyls. Physiol. Plant. 59: 23-27.pl
dc.description.referencesCerana R., Lado P., Anastasia M., Ciuffreda P., Allevi P. (1984). Regulating effects of brassinosteroids and of sterols on growth and H+ secretion in maize roots. Z. Pflanzenphysiol. Bd. 114: 221-225.pl
dc.description.referencesCerana R., Spelta M., Bonetti A., Lado P. (1985). On the effects of cholesterol on H+ - extrusion and on growth in maize root segments: comparison with brassinosteroid. Plant Sci. 38: 99-105.pl
dc.description.referencesChen J.-G. (2001). Dual auxin signaling pathways control cell elongation and division. J. Plant Growth Regul. 20: 255-264.pl
dc.description.referencesChen K .-H., Miller A. N., Patterson G. W., Cohen J. D. (1988). A rapid and simple procedure for purification of indole-3-acetic acid prior to GC-SIM-MS analysis. Plant Physiol. 86: 822-825.pl
dc.description.referencesChoe S. (2006). Brassinosteroid biosynthesis and inactivation. Physiol. Plant. 126: 539-548.pl
dc.description.referencesChoe S., Dilkes B. P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K. A. (1998). The DWF4 gene of Arabidopsis encodes a cytochrorne P450 that mediates multiple 22a-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10: 231-243.pl
dc.description.referencesChory J., Li J. (1997). Gibberellins, brassinosteroids and light-regulated develop ment. Plant Cell Environ. 20: 801-806.pl
dc.description.referencesClaiborne A. (1985). Catalase activity. [W:] Greenwald R. A. (red.). CRC Handbook of methods in oxygen radical research. CRC Press Inc., Boca Raton, s. 283-284.pl
dc.description.referencesClouse S. D. (2002). Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol. Cell 10: 973-982.pl
dc.description.referencesClouse S. D., Feldmann K. A. (1999). Molecular genetics of brassinosteroid action. [W:] Sakurai A., Yokota T., Clouse S. D. (red.). Brassinosteroids: steroidal plant hormones. Springer-Verlag, Tokyo, s. 163-190.pl
dc.description.referencesCobbett C. (2000). Phytochelatins and their roles in heavy metal detoxification. Plant Physiol. 123: 825- 832.pl
dc.description.referencesCobbett C., Goldsbrough P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu. Rev. Plant Biol. 53: 159-182.pl
dc.description.referencesCohen J. D., Meudt W. J. (1983). Investigations on the mechanisms of the brassinosteroid response. I. Indole-3 -acetic acid metabolism and transport. Plant Physiol. 72: 691-694.pl
dc.description.referencesCohen J. D., Slovin J. P., Hendrickson A. M. (2003). Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends Plant Sci. 8: 197-199.pl
dc.description.referencesCollins M. (1978). AIgal toxins. Microbiol. Rev. 42: 725-746.pl
dc.description.referencesCrawford N. M., Kahn M . L., Leustek T., Long S. R. (2000). Nitrogen and sulfur. [W:] Buchanan B., Gruissem W., Jones R. (red.). Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, S. 786-849.pl
dc.description.referencesCymers J., Niemiałtowski M. (2004). Białka szoku cieplnego. Molekularne perpetuum mobile. Post. Biol. Kom. 31: 331-352.pl
dc.description.referencesCzarna M., Jarmuszkiewicz W. (2006). Rola mitochondriów w wytwarzaniu i usuwaniu reaktywnych form tlenu; związek z przesyłaniem sygnałów i programowaną śmiercią komórki. Post. Bioch. 52: 145-156.pl
dc.description.referencesCzerpak R. (1993). Fotokontrola wzrostu, rozwoju i metabolizmu glonów. Kosmos 42: 599-612.pl
dc.description.referencesCzerpak R., Bajguz A. (1993). Effect of auxins and cytokinins on protein and saccharides extracellular excretion in Chlorella pyrenoidosa. Pol. Arch. Hydrobiol. 40: 249-254.pl
dc.description.referencesCzerpak R., Bajguz A. (1997). Stimulatiory effect of auxins and cytokinins on carotenes, with differential effects on xanthophylls in the green alga Chlorella pyrenoidosa Chick. Acta Soc. Bot. Pol. 66: 41-46.pl
dc.description.referencesCzerpak R., Bajguz A., Białecka B., Wierzchołowska L. E., Wolańska M. M. (1994). Effect of auxin precursors and chemical analogues on the growth and chemical composition in Chlorella pyrenoidosa Chick. Acta Soc. Bot. Pol. 63: 279-286.pl
dc.description.referencesCzerpak R., Piotrowska A. (2003). Cytokininy, ich struktura metabolizm i aktywność biologiczna. Kosmos 52: 203-215.pl
dc.description.referencesD'Agostino L B., Kieber J. J. (1999). Molecular mechanism of cytokinin action. Curr. Opin. Plant Biol. 2: 359-364.pl
dc.description.referencesDavies K. L., Davies M. S., Francis D. (1991). The influence of an inhibitor of phytochelatin synthesis on root growth and root meristematic activity in Festuca rubra L. in response to zinc. New Phytol. 118: 565-570.pl
dc.description.referencesDavies P. J. (red.). (2004). Plant hormones. Biosynthesis, signal transduction, action! Kluwer Acad. Publ., Dordrecht.pl
dc.description.referencesDe Filippis L. F., Pallaghy C. K. (1976). The effect of sublethal concentrations of mercury and zinc on Chlorella. III. Development and possible mechanisms of resisitance to metaIs. Z. Pflanzenphysiol. 79: 323-335.pl
dc.description.referencesDe Knecht J. A., Van Dillen M., Koevoets P. L. M., Schat H., Verkleij J. A. C., Ernst W. H. O. (1994). Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol. 104: 255-261.pl
dc.description.referencesDe Michelis M. L, Lado P. (1986). Effects of a brassinosteroid on growth and on H+ - extrusion in isolated radish cotyledons: comparison with the effects of benzyladenine. Physiol. Plant. 68: 603-607.pl
dc.description.referencesDeI Pozo J. C., Lopez-Matas M. A., Ramirez-Parra E., Gutierrez C. (2004). Hormonal control of the plant cell cycle. Physiol. Plant. 123: 173-183.pl
dc.description.referencesDeI Rio L. A., Sandalio L. M., Corpas F. J., Palma J. M., Barroso J. B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol. 141: 330-335.pl
dc.description.referencesDharmasiri N., Estelle M. (2004). Auxin signaling and regulated protein degradation. Trends Plant Sci. 9: 302-308.pl
dc.description.referencesDhaubhadel S., Browning K. S., Gallie D. R., Krishna P. (2002). Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J. 29: 681-691.pl
dc.description.referencesDhaubhadel S., Chaudhary S., Dobinson K. F., Krishna P. (1999). Treatment of 24-epibrassinolide, a brassinosteroid, increases the basic thermotolerance of Brassica napus and tomato seedlings. Plant Mol. Biol. 40: 333-342.pl
dc.description.referencesDisch A., Schwender J., Miiller e, Lichtenthaler H. K., Rohmer M. (1998). Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem. J. 333: 381-388.pl
dc.description.referencesDurrieu C., Tran-Minh C. (2002). Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Safety 51: 206-209.pl
dc.description.referencesEIstner E. F., Heupel A. (1976). Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Ann. Biochem. 70: 616-620.pl
dc.description.referencesEun J-S., Kuraishi S., Sakurai A. (1989). Changes in levels of auxin and abscisic acid and the evolution of ethylene in squash hyp ocotyls after treatment with brassinolide. Plant Cell Physiol. 30: 807-810.pl
dc.description.referencesFargasova A. (1993). Effect of five toxic metaIs on the alga Scenedesmus quadricauda. Biologia 48: 301-304.pl
dc.description.referencesFeldmann K. A., Marks M. D., Christianson M. L., Quatrano R. S. (1989). A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243: 1351-1354.pl
dc.description.referencesFranklin N. M., Stauber J. L., Markich S. J., Lim R. P. (2000). pH-dependent toxicity of copper and uranium to a tropical freshwater alga (Chlorella sp). Aquat. Toxicol. 48: 275-289.pl
dc.description.referencesFrankowski K, Kęsy J., Kopcewicz J. (2001). Fitochrom i transdukcja sygnału świetlnego. Post. Bioch. 47: 184-191.pl
dc.description.referencesFriedrichsen D., Chory J. (2001). Steroid signaling in plants: from the cell surface to the nucleus. BioEssays 23: 1028-1036.pl
dc.description.referencesFujioka S., Inoue T., Takatsuto S., Yanagisawa T., Sakurai A., Yokota T. (1995a). Identification of a new brassinosteroid, cathasterone, in cultured cells of Catharanthus roseus as a biosynthetic precursor of teasterone. Biosci. Biotech. Biochem. 59: 1543-1547.pl
dc.description.referencesFujioka S., Inoue T., Takatsuto S., Yanagisawa T., Sakurai A., Yokota T. (1995b). Biological activities of biosynthetically-related congeners of brassinolide. Biosci. Biotech. Biochem. 59: 1973-1975.pl
dc.description.referencesFujioka S., Li J., Choi Y.-H., Seto H., Takatsuto S., Noguchi T., Watanabe T., Kuriyama H., Yokota T., Chory J., Sakurai A. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9: 1951-1962.pl
dc.description.referencesFujioka S., Noguchi T., Sekimoto M., Takatsuto S., Yoshida S. (2000a). 28 -Norcastasterone is biosynthesized from castasterone. Phytochemistry 55: 97-­101.pl
dc.description.referencesFujioka S., Noguchi T., Watanabe T., Takatsuto S., Yoshida S. (2000b). Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus. Phytochemistry 53: 549-553.pl
dc.description.referencesFujioka S., Takatsuto S., Yoshida S. (2002). An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol. 130: 930-939.pl
dc.description.referencesFujioka S., Yokota T. (2003). Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54: 137-164.pl
dc.description.referencesGächter R., Mares A. (1979). Effect of increased heavy metal loads on phytoplankton communites. MELIMEX an Experimental Heavy Metal Pollution Study 770: 229-246.pl
dc.description.referencesGamoh K., Takatsuto S. (1994). Liquid chromatographic assay of brassinosteroids in plants. J. Chromatogr. A 658: 17-25.pl
dc.description.referencesGaspar T., Kevers C., Penel C., Greppin H., Reid D. M., Thorpe T. A. (1996). Plant hormones and plant growth regulators in plant tissue culture. In Vitro Celi Dev. Biol. Plant 32: 272-289.pl
dc.description.referencesGregory L. E., Mandava N. B. (1982). The activity and interaction of brassinolide and gibberellic acid in mung bean epicotyls. Physiol. Plant. 54: 239-243.pl
dc.description.referencesGreider R. J., Osborne B . A. (1992). AIgal photosynthesis. Chapman and Hall, New York.pl
dc.description.referencesGrill E., Winnaker E .-L., Zenk M. H. (1985a). Phytochelatins, a class of heavymetals-binding peptides from plants are functionally analogous to methallothioneins. Proc. Natl. Acad. Sci. USA 84: 439-443.pl
dc.description.referencesGrove M . D., Spencer G . F., Rohwedder W. K., Mandava N., Wodey J. F., Warthen Jr J. D., Steffens G. L., Flippen-Anderson J. L., Cook Jr J. C. (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216-217.pl
dc.description.referencesGumiński S. (1990). Fizjologia glonów i sinic. Wyd. Uniw. Wroc., Wrocław.pl
dc.description.referencesGwóźdź E. A. (1996). Molekularne podstawy odpowiedzi roślin na stresy środowiskowe. [W:] Barciszewski J., Łastowski K., Twardowski T. (red.). Nowe tendencje w biologii molekularnej i inżynierii genetycznej. Wyd. Sorus, Poznań, s. 469 -492.pl
dc.description.referencesGwóźdź E . A., Przymusiński R., Rucińska R., Deckert J. (1997). Plant cell responses to heavy metais: molecular and physiological aspects. Acta Physiol. Plant. 19: 459-465.pl
dc.description.referencesHampp A. D., Lendzian K. (1974). Effect of lead ion on chlorophyll synthesis. Naturwissenschaften 61: 218-219.pl
dc.description.referencesHarberer G ., Kieber J. J. (2002). Cytokinins. New insights into a classic phy tohormone. Plant Physiol. 128: 354-362.pl
dc.description.referencesHare P. D., Cress W. A., van Staden J. (1997). The involment of cytokinins in plant responses to environmental stress. Plant Growth Regul. 23: 79-103.pl
dc.description.referencesHarmens H., Den Hartog P. R., Ten Bookum W. M., Verkleij J. C. A. (1993). Increased zinc tolerance in Silene vulgaris (Moench) Garcke is not due to increased production of phytochelatins. Plant Physiol. 103: 1305-1309.pl
dc.description.referencesHe R.-Y., Wang G.-J., Wang X.-S. (1991). Effect of brassinolide on growth and chilling resistance of maize seedlings. [W:] Cutler H. G., Yokota T., Adam G. (red.). Brassinosteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, s. 220-230.pl
dc.description.referencesHe Z., Wang Z.-Y., Li J., Zhu Q., Lamb C., Ronald P., Chory J. (2000). Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science 288: 2360-2363.pl
dc.description.referencesHellingwerf K. J., Hoff W. D., Crielaard W. (1996). Photobiology of microorganisms: how photosensors catch a photon to initialize signaling. Mol. Microbiol. 21: 683-693.pl
dc.description.referencesHetmann A., Kowalczyk S. (2004a). Roślinne receptory światła niebieskiego i UV-A pośredniczące w reakcjach fototropicznych, fotomorfogenezie i nastawianiu zegara biologicznego. Post. Biol. Kom. 31: 441-463.pl
dc.description.referencesHetmann A., Kowalczyk S. (2004b). Szlaki sygnałowe aktywowane przez fitochromy, roślinne receptory światła czerwonego i dalekiej czerwieni. Post. Biol. Kom. 31: 155-176.pl
dc.description.referencesHewitt B. R. (1958). Spectrophotometric determination of protein in alkaline solution. Nature 182: 4630.pl
dc.description.referencesHolden M. J., Patterson G. W. (1982). Taxonomic implication of sterol composition in the genus Chlorella. Lipids 17: 215-219.pl
dc.description.referencesHolzwarth A. R. (1991). Structure-function relationships and energy transfer in phycobiliprotein antennae. Physiol. Plant. 83: 518-528.pl
dc.description.referencesHorvath D. P., Anderson J. V., Chao W. S., Foley M. E. (2003). Knowing when to grow: signais regu lating bud dormancy. Trends Plant Sd. 8: 534-540.pl
dc.description.referencesHosono H., Uemura L, Takumi T., Nagamune T., Yasuda T., Kishimoto M., Nagashima H., Shimomura N., Natori M., Endo L. (1994). Effect of culture temperature shift on the cellular sugar accumulation of Chlorella vulgaris SO-26. J. Ferment. Bioeng. 78: 235 -240.pl
dc.description.referencesHotta Y., Tanaka T., Bingshan L., Takeuchi Y., Konnai M. (1998). Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. J. Pesticide Sci. 23: 29-33.pl
dc.description.referencesHörtensteiner S. (1999). Chlorophyll breakdown in higher plants and algae. Cell. Mol. Life Sci. 56: 330-347.pl
dc.description.referencesHu Y., Boa E, Li J. (2000). Promotive effect of brassinosteroids on cell division involves a distinct CycD3- -induced pathway in Arabidopsis. Plant J. 24: 693-701.pl
dc.description.referencesHwang L, Sheen J. (2001). Two-component drcuitry in Arabidopsis cytokinin signal transduction. Nature 413: 383-389.pl
dc.description.referencesIba K. (2002). Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 53: 225-245.pl
dc.description.referencesIlangovan K., Salazar M., Dash S., Monroy O., Ramos A. (1992). Interaction of cadmium, copper and zinc in Chlorella pyrenoidosa Chick. Environ. Technol. 13: 195-199.pl
dc.description.referenceslvanova M., Todorov l., Pashankov P., Kostova L., Kaminek M. (1992). Estimation of cytokinins in the unicellular green algae Chlamydomonas reinhardtii Dang. [W:] Kaminek M., Mok D. W. S., Zazimalova E. (red.). Physiology and biochemistry of cytokinins in plants. SPB Acad. Publ., The Hague, s. 483-485.pl
dc.description.referencesJablonski P. P., Anderson J. W. (1978). Light-dependent reduction of oxidised glutathione by ruptured chloroplasts. Plant Physiol. 61: 221-225.pl
dc.description.referencesJakubowska A. (2004). Mechanizmy regulacji poziomu IAA w roślinach. Wyd. UMK, Toruń.pl
dc.description.referencesKacperska A. (1995). Udział hormonów roślinnych w odpowiedzi roślin na stresowe czynniki środowiska. Kosmos 44: 623-637.pl
dc.description.referencesKacperska A. (2002). Reakcje roślin na abiotyczne czynniki stresowe. [W:] Kopcewicz J., Lewak S . (red.). Fizjologia roślin. Wyd. Naukowe PWN, Warszawa, s. 612-678.pl
dc.description.referencesKakimoto T. (2003). Biosynthesis of cytokinins. J. Plant Res. 116: 233-239.pl
dc.description.referencesKalimuthu K., Sivasubramanian R. (1990). Physiological effects of heavy metals on Zea mays (maize) seedlings. Indian J. Plant Physiol. 33: 242-244.pl
dc.description.referencesKaminek M., Mok D. W. S., Zazimalova Z. E. (red.). (1992). Physiology and biochemistry of cytokinins in plants. SPB Acad. Publ., The Hague.pl
dc.description.referencesKaminek M., Motyka V., Vańkova R. (1997). Regulation of cytokinin content in plant cells. Physiol. Plant. 101: 689-700.pl
dc.description.referencesKamiya A. (1998). Signal transduction in blue-induced oxygen uptake in Chlorella cells. Physiol. Plant. 104: 50-55.pl
dc.description.referencesKampfenkel K., Van Montagu M., Inze D. (1995). Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 225: 165-167.pl
dc.description.referencesKang J.-G., Yun J., Kim D.-H., Chung K.-S., Fujioka S., Kim J.-l., Dae H.-W., Yoshida S., Takatsuto S., Song P.-S., Park C.-M. (2001). Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth. Cell 105: 625-636.pl
dc.description.referencesKatsumi M. (1985). Interaction of a brassinosteroid with IAA and GA₃ in the elongation of cucumber hypocotyl sections. Plant Cell Physiol. 26: 615-625.pl
dc.description.referencesKatsumi M. (1991). Physiological modes of brassinolide action in cucumber hypocotyl growth. [W:] Cutler H. G., Yokota T., Adam G. (red.). Brassinosteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, s. 246-254.pl
dc.description.referencesKauschmann A., Jessop A., Koncz C., Szekeres M., Willimitzer L., Altmann T. (1996). Genetic evidence for an essential role of brassinosteroids in plant development. Plant J. 9: 701-713.pl
dc.description.referencesKawecka B., Eloranta P. V. (1994). Zarys ekologii glonów wód słodkich i środowisk lądowych. Wyd. Naukowe PWN, Warszawa.pl
dc.description.referencesKende H., Zeevaart J. A. D. (1997). The five "classical" plant hormones. Plant Cell 9: 1197-1210.pl
dc.description.referencesKessler E. (1986). Limits of growth of five Chlorella species in the presence of toxic heavy metals. Arch. Hydrobiol. 73: 123-128.pl
dc.description.referencesKevei E., Nagy F. (2003). Phytochrome controlIed signalling cascades in higher plants. Physiol. Plant. 117: 305-313.pl
dc.description.referencesKim S.-K., Chang S. C., Lee E. J., Chung W.-S., Kim Y.-S., Hwang S., Lee J. S. (2000). lnvolvement of brassinosteroids in the gravitropic response of priary root of maize. Plant Physiol. 123: 99-1004.pl
dc.description.referencesKim T. W., Hwang J. Y., Kim Y. S., Joo S. H., Chang S. C., Lee J. S., Takatsuto S., Kim S. K. (2005). Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17: 2397-2412.pl
dc.description.referencesKim Y.-S., Kim T.-W., Chang S., Pharis R. P., Lee J. S., Han T.-J., Takatsuto S., Cheong H., Kim S.-K. (2006). Regulation of castasterone level in primary roots of maize, Zea mays. Physiol. Plant. 127: 28-37.pl
dc.description.referencesKinoshita T., Cano-Delgado A., Seto H., Hiranuma S., Fujioka S., Yoshida S., Chory J. (2005). Binding of brassinosteroids to the extracelIular domain of plant receptor kinase BRI1. Nature 433: 167-171.pl
dc.description.referencesKlahre U., Noguchi T., Fujioka S., Takatsuto S., Yokota T., Nomura T., Yoshida S., Chua N.-H. (1998). The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell 10: 1677-1690.pl
dc.description.referencesKnop W. (1865). Quantitative untersuchungen über die ernahrungsprozesse der pflanzen. Landwirtsch. Verso Stn. 7: 93-107.pl
dc.description.referencesKoka C. V., Cerny R. E., G ardner R. G., Noguchi T., Fujioka S., Takatsuto S., Yoshida S., Clouse S. D. (2000). A putative role for the tomato genes DUMPY and CURL-3 in bras sino steroid biosynthesis and response. Plant Physiol. 122: 85-98.pl
dc.description.referencesKonstantinova O. V., Antonchick A. P., Oldham N. J., Zhabinskii V. N., Khripach V. A., Schneider B. (2001). Analysis of underivatized brassinosteroids by HPLC/ APCl-MS. Occurrence of 3-epibrassinolide in Arabidopsis thaliana. Collect. Czech. Chem. Commun. 66: 1729-1734.pl
dc.description.referencesKopcewicz J., Lewak S. (red.). (2002). Fizjologia roślin. Wyd. Naukowe PWN, Warszawa.pl
dc.description.referencesKopcewicz T., Tretyn A., Cymerski M. (1992). Fitochrom i morfogeneza roślin. Wyd. Naukowe PWN, Warszawa.pl
dc.description.referencesKowalczyk S., Hadowska E., Piekarska A. (2005). Roślinne układy ubikwitylacji i degradacji białek w proteasomach, kluczowymi elementami hormonalnych szlaków sygnałowych. Post. Bioch. 51: 171-187.pl
dc.description.referencesKrishna P. (2003). Brassinosteroid-mediated stress responses. T. Plant Growth Regul. 22: 289-297.pl
dc.description.referencesKrupa Z., Baszyński T. (1995). Some aspects of heavy metals toxicity towards photosynthetic apparatuss - direct and indirect effects on light and dark reactions. Acta Physiol. Plant. 17: 177-190.pl
dc.description.referencesKulaeva O. N., Bu rkhanova E. A., Fedina A. B., Khokhlova V. A., Bokebayeva G. A., Vorbrodt H. M., Adam G. (1991). Effect of brassinosteroids on protein synthesis and plant-cell ultra-structure under stress conditions. [W:] Cutler H. G., Yokota T., Adam G. (red.) . Brassinosteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, s. 141-157.pl
dc.description.referencesKuyucak N., Volesky B. (1990). Biosorption by algal biomass. [W:] Volesky B. (red.). Biosorption of heavy metals. CRS Press, Boca Raton, s. 173-198.pl
dc.description.referencesKwak T. M., Nguyen V., Schroeder T. L. (2006). The role of reactive oxygen species in hormonal responses. Plant Physiol. 141: 323-329.pl
dc.description.referencesLadygin V. G. (2000). Biosynthesis of carotenoids in the chloroplasts of algae and higher plants. Russ. T. Plant Physiol. 47: 796-814.pl
dc.description.referencesLaemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.pl
dc.description.referencesLam P. K. S., Wut P. F., Chan A. C. W., Wu R. S. S. (1999). lndividual and combined effects of cadmium and copper on the growth response of Chlorella vulgaris. Environ. Toxicol. 14: 347-353.pl
dc.description.referencesLee C- G., Palsson B. Ø. (1996). Photoacclimation of Chlorella vulgaris to red light from light-emitting diodes leads to autospore release following each cellular division. Biotechnol. Prog. 12: 249-256.pl
dc.description.referencesLee Y.-K., Tan H.-M., Hew C-S. (1985). The effect of growth temperature on the bioenergetics of photosynthetic algal cultures. Biotechnol. Bioeng. 27: 555-561.pl
dc.description.referencesLewak S. (1995). Hormony roślinne - kierunki badań ostatniego dziesięciolecia. Kosmos 44: 601-622.pl
dc.description.referencesLewis S., Handy D., Cordi B., Billinghurst Z., Depledge M. H. (1999). Stress proteins ( HSP's) : methods of detection and their use as an environmental biomarker. Ecotoxicology 8: 351-368.pl
dc.description.referencesLexa M., Genkov T., Malbeck T., Machaćkova L., Brzobohaty B. (2003). Dynamics of endogenous cytokinin pools in tobacco seedlings: a modelling approach. Ann. Bot. 91: 585-597.pl
dc.description.referencesLeyser O. (2002). Molecular genetics of auxin signaling. Annu. Rev. Plant Biol. 53: 377-398.pl
dc.description.referencesLi J. (2003). Brassinosteroids signal through two receptor-like kinases. Curr. Opin. Plant Biol. 6: 494-499.pl
dc.description.referencesLi J. (2005). Brassinosteroid signaling: from receptor kinases to transcription factors. Curr. Opin. Plant Biol. 8: 526-531.pl
dc.description.referencesLi J., Chory J. (1997). A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90: 929-938.pl
dc.description.referencesL i J., Chory J. (1999). Brassinosteroid actions in plants. J. Exp. Bot. 50: 275-282.pl
dc.description.referencesLi J., Jin H. (2007). Regulation of brassinosteroid signaling. Trends Plant Sci. 12: 37-41.pl
dc.description.referencesLi J., Nagpal P., Vitart V., McMorris T. C., Chory J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272: 398-401.pl
dc.description.referencesLi L., van Staden J. (1998a). Effects of plant growth regulators in drought resistance of two maize cultivars. South Afr. J. Bot. 64: 116-120.pl
dc.description.referencesLi L., van Staden J. (1998b). Effects of plant growth regulators on the antioxidant in callus of two maize cultivars subjected to water stress. Plant Growth Regul. 24: 55-66.pl
dc.description.referencesLi L., van Staden J., Jager A. K. (1998). Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul. 25: 81- 87.pl
dc.description.referencesLichtenthaler H. K. (2000). Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem. Soc. Trans. 28: 785-789.pl
dc.description.referencesLin C. (2000). Plant blue-light receptors. Trends Plant Sci. 5: 337-342.pl
dc.description.referencesLiscum E., Hodgson D. W., Campbell T. J. (2003). BIue light signaling through the cryptochromes and phototropins. So that's what the blue is all about. Plant Physiol. 133: 1429-1436.pl
dc.description.referencesLowry P. H., Rosebrough N. J., Furr A. L., Randall P. J. (1951). Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265-275.pl
dc.description.referencesLudwig-Miiller J. (2000). Indole-3-butyric acid in plant growth and development. Plant Growth Reguł. 32: 219-230.pl
dc.description.referencesMa J. F. (2000). Role of organic acids in detoxification of aluminium in higher plants. Plant Cell Physiol. 41: 383-390.pl
dc.description.referencesMacfie S . M ., Tarmohamed Y., Welbourn P. M. (1994). Effects of cadmium, cobalt, copper and nickel on growth of the green alga Chlamydomonas reinhardtii: The influence of the cell wall and pH. Arch. Environ. Contam. Toxicol. 27: 454-458.pl
dc.description.referencesMaeda S., Kusadome K, Arima H., Ohki A., Naka K. (1992). Biomethylation of arsenie and its excretion by the alga Chlorella vulgaris. Appl. Organom. Chem. 6: 407-413.pl
dc.description.referencesMałecka A., Tomaszewska B. (2005). Reaktywne formy tlenu w komórkach roślinnych i enzymatyczne systemy obronne. Post. Biol. Kom. 32: 311-325.pl
dc.description.referencesMallick N. (2004). Copper-induced oxidative stress in the chlorophycean microalga Chlorella vulgaris: response of the antioxidant system. J. Plant Physiol. 161: 591-597.pl
dc.description.referencesMandava N. B., Sasse J. M., Yopp J. H. (1981). Brassinolide, a growth-promoting steroidal lactone. II. Activity in selected gibberellin and cytokinin bioassays. PhysioL Plant. 53: 453-461.pl
dc.description.referencesMazur H., Konop A., Synak R. (2001). Indole-3-acetic acid in the culture medium of two axenic green microalgae. Appl. Phycol. 13: 35-42.pl
dc.description.referencesMazurek U. (1993). Changes of C18 fatty acids content in phospholipids of synchronously cultured Chlorella vulgaris. Acta Biochim. Pol 40: 120-122.pl
dc.description.referencesMesmar M. N., Jaber K. (1991). The toxie effect of lead on seed germination, growth, chlorophyll and protein content. Acta Biol. Hungarica. 42: 331-334.pl
dc.description.referencesMeuwly P., Thibault P., Schwan A. E., Rauser W. E. (1995). Three families of thiol peptides are induced by cadmium in mai ze. Plant J. 7: 391-400.pl
dc.description.referencesMichalczuk L., Ribnieky D. M., Cooke T. J., Cohen J. D. (1992). Regulation of indole-3-acetic biosynthesis pathways in carrot cell cultures. Plant Physiol. 100: 1346-1353.pl
dc.description.referencesMiernyk J. A. (1997). The 70 kDa stress-related proteins as molecular chaperones. Trends Plant Sci. 2: 180-187.pl
dc.description.referencesMittler R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.pl
dc.description.referencesMittler R., Vanderauwera S., Gollery M., Van Breusegem F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci. 9: 490-498.pl
dc.description.referencesMok D. W. S., Mok M. C. (2001). Cytokinins metabolism and actions. Annu. Rev. Plant PhysioL Biol. 52: 89-119.pl
dc.description.referencesMok M. C., Martin R. C., Mok D. W. S. (2000). Cytokinins: biosynthesis, metabolism and perception. In Vitro Cell Dev. Biol. Plant 36: 102-107.pl
dc.description.referencesMostowska A., Gwóźdź E. A. (1995). Reakcje aparatu fotosyntetycznego na stres oksydacyjny. Post. Biol. Kom. 22: 43-63.pl
dc.description.referencesMueller C., Schwender J., Zeidler J., Lichtenthaler H. K. (2000). Properties and inhibition of the first two enzymes of the non-mevalonate pathway of isoprenoid biosynthesis. Biochem. Soc. Trans. 28: 792-793.pl
dc.description.referencesMullineaux P. M., Karpinski S., Baker N. R. (2006). Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol 141: 346-350.pl
dc.description.referencesMüssig C., Altmann T. (2003). Genomie brassinosteroid effects. J. Plant Growth Regul. 22: 313-324.pl
dc.description.referencesNakano Y., Asada K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in Spinach chloroplasts. Plant Cell Physiol. 22: 867-880.pl
dc.description.referencesNapier R. M. (2001). Models of auxin binding. J. Plant Growth Regul. 20: 244-254.pl
dc.description.referencesNapier R. M., David K. M., Perrot-Rechenmann C. (2002). A short history of auxinbinding proteins. Plant Mol. Biol. 49: 339-348.pl
dc.description.referencesNeff M. M., Fankhause C., Chory J. (2000). Light: an indieator of time and place. Gene Dev. 14: 257-271.pl
dc.description.referencesNemhauser J. L., Mockler T. C ., Chory J. (2004). Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PloS Biology 2: 1460-1471.pl
dc.description.referencesNicolov N. N. (1997). Asynchronous nudear and cell division as a natural biologica process in unicellular green alga. Endocytobiosis Cell. Res. 12: 71-82.pl
dc.description.referencesNishikawa N., Toyama S., Shida A., Futatsuya F. (1994). The uptake and transport of 14C-Iabeled epibrassinolide in intact seedlings of cucumber and wheat. J. Plant Res. 107: 125-130.pl
dc.description.referencesNoguchi T., Fujioka S., Choe S., Takatsuto S., Tax F. E., Yoshida S., Feldmann K. A. (2000). Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol. 124: 201-209.pl
dc.description.referencesNoguchi T., Fujioka S., Choe S., Takatsuto S., Yoshida S., Yuan H., Feldmann K. A., Tax F. E. (1999). Brassinosteroid-insensitive dwarf mutant of Arabidopsis accumulate brassinosteroids. Plant Physiol. 121: 743-752.pl
dc.description.referencesNomura T., Bishop G. J., Kaneta T., Reid J. B., Chory J., Yokota T. (2003). The LKA gene is a BRASSINOSTEROID INSENSITIVE 1 homolog of pea. Plant J. 36: 291-300.pl
dc.description.referencesNomura T., Nakayama M., Reid J. B., Takeuchi Y., Yokota T. (1997). Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol. 113: 31-37.pl
dc.description.referencesNomura T., Sato T., Bishop G. J., Kamiya Y., Takatsuto S., Yokota T. (2001). Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry 57: 171-178.pl
dc.description.referencesNormanly J. (1997). Auxin metabolism. Physiol. Plant. 100: 431-442.pl
dc.description.referencesNormanly J., Cohen J. D., Fink G. R. (1993). Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci. USA 90: 10355-10359.pl
dc.description.referencesNoutoshi Y., Ho Y., Kanetani S., Fujie M., Usami S., Yamada T. (1998). Molecular anatomy of a small chromosome in the green alga Chlorella vulgaris. Nud. Acids Res. 26: 3900-3907.pl
dc.description.referencesNúñez M., Mazzafera P., Mazorra L. M., Siqueira W. J., Zullo M. A. T. (2003). Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biol. Plant. 47: 67-70.pl
dc.description.referencesOgbonna J. C., Tanaka H. (1996). Night biomass loss and changes in biochemical composition of cells during light/night cyclic culture of Chlorella pyrenoidosa. J. Ferment. Bioeng. 82: 558-564.pl
dc.description.referencesOka A. (2003). New insights into cytokinins. J. Plant Res. 116: 217-220.pl
dc.description.referencesOkamoto O. K., Pinto E., Latorre L. R., Bechara E . J. H., Colepicolo P. (2001). Antioxidant modulation in response to metal-induced oxidative stress in algal chloroplasts. Arch. Environ. Contam. Toxicol. 40: 18-24.pl
dc.description.referencesŐzdemir F., Bor M., Demiral T., Türkan I. (2004). Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Reguł. 42: 203-211.pl
dc.description.referencesPark S .-H., Han K.-S., Kim T.-W., Shim J.-K., Takatsuto S., Yokota T., Kim S.-K. (1999). In vivo and in vitro conversion of teasterone to typhasterol in cultured cells of Marchantia polymorpha. Plant Cell Physiol. 40: 955-960.pl
dc.description.referencesGrill E., Winnaker E .-L., Zenk M. H. (1985b). Phytochelatins: The principal heavy metal complexing peptides of higher plants. Science 230: 674-676.pl
dc.description.referencesParks B. M. (2003). The red side of photomorphogenesis. Plant Physiol. 133: 1437-1444.pl
dc.description.referencesPawlik-Skowrońska B. (2002). Tajemnice odporności glonów i sinic na metale ciężkie. Kosmos 51: 175-184.pl
dc.description.referencesPawlik-Skowrońska B., Kaczorowska R., Skowroński T. (1997). The impact of inorganic tin on the planktonie cyanobacterium Synechocystis aquatilis: the effect of pH and humic acid. Environ. Poll. 97: 65-69.pl
dc.description.referencesPawlik-Skowrońska B., Kaczorowska R., Skowroński T. (1998). The impact of some organotins on the unicellular cyanobacterium Synechocystis aquatilis. Oceanol. Stud. 1: 79-90.pl
dc.description.referencesPeng P., Li J. (2003). Brassinosteroid signal transduction: a mix of conservation and novelty. J. Plant Growth Regul. 22: 298-312.pl
dc.description.referencesPiechalak A., Tomaszewska B. (2004). Rola związków tiolowych w roślinach w stresie wywołanym metalami ciężkimi. Post. Biol. Kom. 31: 717-733.pl
dc.description.referencesPiotrowska A., Czerpak R. (2004). Molekularne mechanizmy działania cytokinin. Post. Biol. Kom. 31: 93-115.pl
dc.description.referencesPirson A., Lorenzen H. (1966) . Synchronized dividing algae. Annu. Rev. Plant Physiol. 17: 439-458.pl
dc.description.referencesPodbielkowski Z. (1996). Glony. Wyd. WSiP, Warszawa.pl
dc.description.referencesPorankiewicz J., Gwóźdź E. A. (1993). Białka szoku termicznego i ich rola w komórkach roślinnych. Post. Biol. Kom. 20: 155-170.pl
dc.description.referencesPoskuta J. W., Parys E., Romanowska E. (1996). Toxicity of lead to photosynthesis, accumulation of chlorophyll, respiration and growth of Chlorella pyrenoidosa. Protective role of dark respiration. Acta Physiol. Plant. 18: 165-171.pl
dc.description.referencesPratt W. B., Krish na P., Olsen L. J. (2001). Hsp90-binding immunophilins in plants: the protein movers. Trends Plant Sci. 6: 54-58.pl
dc.description.referencesPrzymusiński R., Gwóźdź E. A. (1994). Increased accumulation of the 16 x 10³ Mr polypeptide in lupin roots exposed to lead, copper and nitrate ions. Environ. Exp. Bot. 34: 63-68.pl
dc.description.referencesPrzymusiński R., Spychała M., Gwóźdź E. A. (1991). Inorganic lead changes, growthand polypeptide pattern of lupin roots. Biochem. Physiol. Pflanzen. 187: 51-57.pl
dc.description.referencesRachlin J. W., Grosso A. (1993). The growth response of the green alga, Chlorella vulgaris to combined divalent cation exposure. Arch. Environ. Contam. Toxicol. 24: 16-20.pl
dc.description.referencesRai L . C., Gaur M . J., Po H. D. (1981). Phycology and heavy metal pollution. Biol. Rev. 56: 99-151.pl
dc.description.referencesRai L . C., Raizada M., Mallick N., Yashmin-Husaini A., Singh A. K., Dubey S. K. (1990). Effects of four heavy metals on the biology of Nostoc muscorum. Biol. Metals 2: 229-234.pl
dc.description.referencesRakwal R., Agrawal G. K., Tamogami S., Yonekura M., Agrawal V. P., Iwahashi H. (2003). Novel insight into kinetin-inducible stress responses in rice seedlings. Plant Physiol. Biochem. 41: 453-457.pl
dc.description.referencesRapparini F., Cohen J. D., Slovin J. P. (1999). Indole-3-acetic acid biosynthesis in Lemna gibba studied using stable isotope labeled anthranilate and tryptophan. Plant Growth Regul. 27: 139-144.pl
dc.description.referencesRayle D. L., CIeland R. E. (1992). The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol. 99: 1271-1274.pl
dc.description.referencesRhoads D. M., Umbach A. L., Subbaiah C. C., Siedow J. N. (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signalling. Plant Physiol. 141: 357-366.pl
dc.description.referencesRiefler M., Novak O., Strnad M., Schmülling T. (2006). Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18: 40-54.pl
dc.description.referencesRoddick J. G. (1994). Comparative root growth inhibitory activity of four brassinosteroids. Phytochemistry 37: 1277-1281.pl
dc.description.referencesRodriguez- Concepción M., Boronat A. (2002). Elucidation of the methylerythriol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130: 1079-1089.pl
dc.description.referencesRoitsch T., Balibrea M. E., Hofmann M., Proeis R., Sinha A. K. (2003). Extracellular invertase: key metabolic enzyme and PR protein. T. Exp. Bot. 54: 513-524.pl
dc.description.referencesRoshchina V. V. (2001). Neurotransmitters in plant life. Science Publ., Inc., Enfield, New Hampshire.pl
dc.description.referencesRucińska R., Waplak S., Gwóźdź E. A. (1999). Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead. Plant Physiol. Biochem. 37: 187-194.pl
dc.description.referencesRüegsegger A., Schmutz D., Brunold C. (1990). Regulation of glutathione synthesis by cadmium in Pisum sativum L. Plant Physiol. 93: 1579-1584.pl
dc.description.referencesSagi M., Fluhr R. (2006). Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141: 336-340.pl
dc.description.referencesSakai N., Sakamoto Y., Kishimoto N., Chihara M., Karube I. (1995). Chlorella strains from hot springs tolerant to high temperature and high CO₂. Energy Convers. Mgmt. 36: 693-696.pl
dc.description.referencesSakakibara H. (2006). Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57: 431-449.pl
dc.description.referencesSakurai A., Fujioka S., Saimoto H. (1991). Production of brassinosteroids in plantcell cultures. [W:] Cutler H. G ., Yokota T., Adam G. (red.). Brassinosteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, s. 97-106.pl
dc.description.referencesSalome P. A., To J. P. C., Kieber J. J., McClung C. R. (2006). Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell 18: 55-69.pl
dc.description.referencesSambrook J., Fritsch E. F., Maniatis T. (1989). Molecular cloning. A laboratory manual. CSH Lab. Press, New York.pl
dc.description.referencesSandau E., Sandau P., Pulz O. (1996). Heavy metal sorption by microalgae. Acta Biotechnol. 16: 227-235.pl
dc.description.referencesSasse J. M. (1985). The place of brassinolide in the sequential response to plant growth regulators in elongating tissue. Physiol. Plant. 63: 303-308.pl
dc.description.referencesSasse J. M. (1990). Brassinolide-induced elongation and auxin. Physiol. Plant. 80: 401-408.pl
dc.description.referencesSasse J. M. (1991a). The case for brassinosteroids as endogenous plant hormones. [W:] Cutler H. G., Yokota T., Adam G. (red.). Brassinosteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, s. 158-166.pl
dc.description.referencesSasse J. M. (1991b). Brassinolide-induced elongation. [W:] Cutler H. G., Yokota T., Adam G. (red.). Brassinosteroids: chemistry, bioactivity and applications. American Chemical Society, Washington, s. 255-264.pl
dc.description.referencesSayed O. H., EI-Shahed A. M. (2000). Growth, photosynthesis and circadin patterns in Chlorella vulgaris (Chlorophytae) in response to growth temperature. Cryptogamie, Algol. 21: 283-290.pl
dc.description.referencesSchat H., Kalff M. M. A. (1992). Are phytochelatins involved in differential metal tolerance or do they merely reflect metal-imposed strain? Plant Physiol. 99: 1475-1480.pl
dc.description.referencesSchlagnhaufer C. D., Arteca R. N., Yopp J. H. (1984). A brassinosteroid-cytokinin interaction on ethylene production by etiolated mung bean segments. Physiol. Plant. 60: 347-350.pl
dc.description.referencesSchumacher K., Chory J. (2000). Brassinosteroid signal transduction: still casting the actors. Curr. Opin. Plant Biol. 3: 79-84.pl
dc.description.referencesSchwender J., Gemünden C., Lichtenthaler H. K. (2001). Chlorophytae exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythriol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta 212: 416-423.pl
dc.description.referencesSchwender J., Zeidler J., Groner R., Müller C., Focke M., Braun S., Lichtenthaler F. W., Lichtenthaler H. K. (1997). Incorporation of 1-deoxy-D-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett. 414: 129-134.pl
dc.description.referencesSharma A., Matsuoka M., Tanaka H., Komatsu S. (2001). Antisense inhibition of a BRU receptor reveals additional protein kinase signaling components downstream to the perception of brassinosteroids in rice. FEBS Lett. 507: 346-350.pl
dc.description.referencesShen H., Lee Y. K. (1997). Thermotolerance induced by heat shock in Chlorella. J. Appl. Phycol. 9: 471-475.pl
dc.description.referencesShubert L. E. (1984). AIgae as ecological indicators. Academic Press, London.pl
dc.description.referencesSingh L., Shono M. (2005). Physiological and molecular effect of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. Plant Growth Regul. 47: 111-119.pl
dc.description.referencesSlaveykova V. L, Wilkinson K. J. (2003). Effect of pH on Pb biouptake by the freshwater alga Chlorella kesslerii. Environ. Chem. Lett. 1: 185-189.pl
dc.description.referencesSłowik D. (1999). Wpływ ołowiu na fotosyntezę. Wiad. Bot. 43: 41-49.pl
dc.description.referencesSmirnoff N. (red.). (1995). Environment and plant metabolism: flexibility and acclimation. BIOS Sci. Publ. Ltd., Oxford.pl
dc.description.referencesSomogyi M. (1954). Notes on sugar determination. J. Biol. Chem. 195: 19-23.pl
dc.description.referencesStanisz A. (1998). Przystępny kurs statystyki w oparciu o program STATISTICA PL na przykładach z medycyny. Wyd. StatSoft, Kraków.pl
dc.description.referencesStiborova M., Doubravova M., Brezinova A. (1986). Effect of heavy metais ions on growth and biochemical characteristics of photosynthesis of barley (Hordeum vulgare L.). Photosynthetica 20: 418-425.pl
dc.description.referencesStirk W. A., Novak O., Strnad M., van Staden J. (2003). Cytokinins in macroalgae. Plant Growth Reguł. 41: 13-24.pl
dc.description.referencesStirk W. A., van Staden J. (2003). Occurrence of cytokinin-like compounds in two aquatic ferns and their exudates. Environ. Exp. Bot. 49: 77-85.pl
dc.description.referencesStroiński A., Kozłowska M. (1997). Cadmium-induced oxidative stress in potato tuber. Acta Soc. Bot. Poł. 66: 189-195.pl
dc.description.referencesSuárez-López P., Coupland G. (1998). Plants see the blue light. Science 279: 1323-1324.pl
dc.description.referencesSung D.-Y., Kaplan F., Lee J.-J., Guy C. L. (2003). Acquired tolerance to temperature extremes. Trends Plant Sci. 8: 179-187.pl
dc.description.referencesSuzuki H., Fujioka S., Takatsuto S ., Yokota T., Murofushi N., Sakurai A. (1993). Biosynthesis of brassinolide from castasterone in cultured cells of Catharanthus roseus. J. Plant Growth Reguł. 12: 101-106.pl
dc.description.referencesSuzuki H., Fujioka S., Takatsuto S., Yokota T., Murofushi N., Sakurai A. (1994a). Biosynthesis of brassinolide from teasterone via typhasterol and castasterone in cultured cells of Catharanthus roseus. J. Plant Growth Reguł. 13: 21-26.pl
dc.description.referencesSuzuki H., Fujioka S., Takatsuto S., Yokota T., Murofushi N., Sakurai A. (1995b). Biosynthesis of brassinosteroids in seedlings of Catharanthus roseus, Nicotiana tabacum and Oryza sativa. Biosci. Biotech. Biochem. 59: 168-172.pl
dc.description.referencesSuzuki H., lnoue T., Fujioka S., Saito T., Takatsuto S., Yokota T., Murofushi N., Yanagisawa T., Sakurai A. (1995a). Conversion of 24-methylcholesterol to 6-oxo-24-methylcholestanol, a putative intermediate of the biosynthesis of brassinosteroids, in cultured cells of Catharanthus roseus. Phytochemistry 40: 1391-1397.pl
dc.description.referencesSuzuki H., Inoue T., Fujioka S., Takatsuto S., Yanagisawa T., Yokota T., Murofushi N., Sakurai A. (1994b). Possible involvement of 3-dehydroteasterone in the conversion of teasterone to typhasterol in cultured cells of Catharanthus roseus. Biosci. Biotech. Biochem. 58: 1186-1188.pl
dc.description.referencesSynkova H., Semoradova S., Burketova L. (2004). High content of endogenous cytokinins stimulates activity of enzymes and proteins involved in stress response in Nicotiana tabacum. Plant Cell Tiss. Org. Cult. 79: 169-179.pl
dc.description.referencesS zekeres M., Nemeth K., Koncz-Kalman Z., Mathur J., Kauschmann A., Altmann T., Redei G . P., Nagy F., Schell J., Koncz C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and deetiolation in Arabidopsis. Cell. 85: 171-182.pl
dc.description.referencesTakamura N., Hatakeyama S., Sugaya Y. (1990a). Seasonal changes in species composition and production of peryphyton ina urban river running through an abandoned copper mining region. Jpn. J. Limnol. 51: 225-235.pl
dc.description.referencesTakamura N., Kasai F., Watanabe M. M. (1989). Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J. Appl. Phycol. 1: 39-52.pl
dc.description.referencesTakamura N., Kasai E, Watanabe M. M. (1990b). Unique response of Cyanophyceae to copper. J. Appl. Phycol. 2: 293-296.pl
dc.description.referencesTakatsuto S. (1994). Brassinosteroids: distribution in plants, bioassays and microanalysis by gas chromatography - mass spectrometry. J. Chromatogr. A 658: 3-15.pl
dc.description.referencesTakatsuto S., Abe H., Gamoh K. (1990). Evidence for brassinosteroids in strobilus of Equisetum arvense L. Agric. Biol. Chem. 54: 1057-1059.pl
dc.description.referencesTakeno K., Pharis R. P. (1982). Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: an auxin-mediated phenomenon. Plant Cell Physiol. 23: 1275-1281.pl
dc.description.referencesTewari R. K., Kumar P., Sharma P. N. (2006). Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copperstressed mulberry plants. Planta 223: 1145-1153.pl
dc.description.referencesThümmler E, Rüdiger W. (1984). Chromophore structure in phytochrome intermediates and bleached forms of phytochrome. Physiol. Plant. 60: 378-382.pl
dc.description.referencesTolbert N. E. (1997). The C2 oxidative photosynthetic carbon cycle. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 48: 1-25.pl
dc.description.referencesTretyn A., Wiśniewska J. (1999). Budowa, właściwości i mechanizm działania kryptochromów - eukariotycznych foto receptorów światła niebieskiego. Post. Biol. Kom. 26: 343-358.pl
dc.description.referencesTukendorf A. (1993). The role of glutathione in detoxification of cadmium and excees copper in spinach plants. Acta Physiol. Plant. 15: 175-183.pl
dc.description.referencesTukendorf A., Rauser W. E. (1990). Changes in glutathione and phytochelatins in roots of maize seedlings exposed to cadmium. Plant Sci. 70: 155-166.pl
dc.description.referencesVílchez C., Garbayo L., Lobato M . V., Vega J. M. (1997). Microalgae-mediated chemicais production and wastes removal. Enzyme Microb. Technol. 20: 562-572.pl
dc.description.referencesVert G., Chory J. (2006). Downstream nuclear events in brassinosteroid signalling. Nature 441: 96-100.pl
dc.description.referencesVert G., Nemhauser J. L., Geldner N., Hong E, Chory J. (2005). Molecular mechanisms of steroid hormone signaling in plants. Annu. Rev. Cell Dev. Biol. 21: 177-201.pl
dc.description.referencesVögeli-Lange R., Wagner G. J. (1990). Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Plant Physiol. 92: 1086-1083.pl
dc.description.referencesVolesky B. (red.). (1990). Biosorption of heavy metaIs. CRC Press, Boca Raton.pl
dc.description.referencesWakasugi T., Nagai T., Kapoor M., Ssugita M., Ito M., Ito S., Tsudzuki J., Nakashima K., Tsudzuki T., Suzuki Y., Hamada A., Ohta T., Inamura A., Yoshinaga K., Sudiura M. (1997). Complete nucleotide sequence of the chloroplast genorne from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. Plant Biol. 94: 5967-5972 .pl
dc.description.referencesWang W., Vinocur B., Shoseyov O., Altman A. (2004). Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244-252.pl
dc.description.referencesWang X., Chory J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313: 1118-1122.pl
dc.description.referencesWang X., Goshe M. B., Soderblom E. J., Phinney B. S., Kuchar J. A., Li J., Asami T., Yoshida S., Huber S. C., Clouse S. D. (2005). ldentification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID -INSENSITIVE1 receptor kinase. Plant Cell 17: 1685-1703.pl
dc.description.referencesWang Z.-Y., He J.-X. (2004). Brassinosteroid signal transduction - choices of signals and receptors. Trends Plant Sci. 9: 91-96.pl
dc.description.referencesWellburn A. R . (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol 144: 307-313.pl
dc.description.referencesWeyers J. D. B., Paterson N. W. (2001). Plant hormones and the control of physiological processes. New Phytol. 152: 375-407.pl
dc.description.referencesWilde E. W., Benemann J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 11: 781-812.pl
dc.description.referencesWilen R. W., Sacco M., Gusta L. V., Krishna P. (1995). Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. PhysioL Plant. 95: 195-202.pl
dc.description.referencesWilson K. E., Król M., Huner N. P. A. (2003). Temperature-induced greening of Chlorella vulgaris. The role of the cellular energy balance and zeaxanthin-dependent nonphotochemical quenching. Planta 217: 616-627.pl
dc.description.referencesWoeste K. E., Vogel J. P., Kieber J. J. (1999). Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana. Physiol Plant. 105: 478-484.pl
dc.description.referencesWong S. L., Nakamoto L., Wainwright J. F. (1997). Detection of toxic organometallic complexes in wastewaters using algal assays. Arch. Environ. Contam. Toxic. 32: 358-366.pl
dc.description.referencesWong S. L., Nakamoto L., Wainright J. F. (1994). ldentification of toxic metais in affected algal cells in assays of wastewaters. J. App. Phycol 6: 405-414.pl
dc.description.referencesWoźny A. (red.). (1995). Ołów w komórkach roślinnych. Pobieranie - reakcje - odporność. Wyd. Sorus, Poznań.pl
dc.description.referencesYi H. C., Joo S., Nam K. H., Lee J. S., Kang B. G., Kim W. T. (1999). Auxin and brassino-steroid differentially regulate the expression of three members of the 1-amino-cyclopropane-1-arboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol. Biol 41: 443-454.pl
dc.description.referencesYokota T. (1997). The structure, biosynthesis and function of brassinosteroids. Trends Plant Sd. 2: 137-143.pl
dc.description.referencesYokota T., Higuchi K., Kosaka Y., Takahashi N. (1992). Transport and metabolism of brassinosteroids in rice. [W:] Karssen C. M., Van Loon L. C., Vereugdenhil D. (red.). Progress in Plant Growth Regulation. Kluwer Academic Publishers, Dordrecht, s. 298-305.pl
dc.description.referencesYokota T., Kim S. K., Fukui Y., Takahashi N., Takeuchi Y., Takematsu T. (1987). Brassinosteroids and sterols from a green alga, Hydrodictyon reticulatum: configuration at C-24. Phytochemistry 26: 503-506.pl
dc.description.referencesYokota T., Nomura T., Kitasaka Y., Takatsuto S., Reid J. B. (1997). Biosynthetic lesions in brassinosteroid-defident pea mutants. Proc. Plant Growth Reg. Soc. Am. 24: 94.pl
dc.description.referencesYokota T., Ogino Y., Takahashi N., Saimoto H., Fujioka S., Sakurai A. (1990). Brassinolide is biosynthesized from castasterone in Catharanthus roseus crown gall cells. Agric. Biol. Chem. 54: 1107-1108.pl
dc.description.referencesYokota T., Sato T., Takeuchi Y., Nomura T., Uno K., Watanabe T., Takatsuto S. (2001). Roots and shoots of tomato produce 6-deoxo-28-cathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry 58: 233-238.pl
dc.description.referencesYopp J. H., Mandava N. B., Sasse J. M. (1981). Brassinolide, a growth-promoting, steroidal lactone. I. Activity in selected auxin bioassays. Physiol. Plant. 53: 445-452.pl
dc.description.referencesZhang W., Yamane H., Takahashi N., Chapman D. J., Phinney B. O. (1989). ldentification of a cytokinin in the green alga Chara globularis. Phytochemistry 28: 337-338.pl
dc.description.referencesZhang X.-P., Glase E. (2002). lnteraction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone. Trends Plant Sd. 7: 14-21.pl
dc.description.referencesZielińska E., Kowalczyk S. (2000). Percepcja i tran sdukcja sygnału auksynowego. Post. Biol. Kom. 27: 155-184.pl
dc.description.referencesZurek D. M., Clouse S. D. (1994). Molecular cloning and characterization of a brassinosteroid-regulated gene from elongating soybean (Glycine max 1.) epicotyls. Plant Physiol. 104: 161-170.pl
dc.description.referencesZych M., Burczyk J. (1998). Glony źródłem substancji biologicznie czynnych. Wiad. Ziel. 4: 11-12.pl
Występuje w kolekcji(ach):Książki / Rozdziały (WBiol)
Książki / Rozdziały (WUwB)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
A_Bajguz_Wplyw_brassinosteroidow_na_kultury_glonu_chlorella_vulgaris.pdf10,67 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)