Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/12389| Tytuł: | Splitting Fields |
| Autorzy: | Schwarzweller, Christoph |
| Słowa kluczowe: | field extensions polynomials splitting fields |
| Data wydania: | 2021 |
| Data dodania: | 4-sty-2022 |
| Wydawca: | DeGruyter Open |
| Źródło: | Formalized Mathematics, Volume 29, Issue 3, Pages 129-139 |
| Abstrakt: | In this article we further develop field theory in Mizar [1], [2]: we prove existence and uniqueness of splitting fields. We define the splitting field of a polynomial p ∈ F[X] as the smallest field extension of F, in which p splits into linear factors. From this follows, that for a splitting field E of p we have E = F(A) where A is the set of p’s roots. Splitting fields are unique, however, only up to isomorphisms; to be more precise up to F-isomorphims i.e. isomorphisms i with i|F = IdF . We prove that two splitting fields of p ∈ F[X] are F-isomorphic using the well-known technique [4], [3] of extending isomorphisms from F1 −→ F2 to F1(a) −→ F2(b) for a and b being algebraic over F1 and F2, respectively. |
| Afiliacja: | Institute of Informatics, University of Gdańsk, Poland |
| URI: | http://hdl.handle.net/11320/12389 |
| DOI: | 10.2478/forma-2021-0013 |
| ISSN: | 1426–2630 |
| e-ISSN: | 1898-9934 |
| Typ Dokumentu: | Article |
| Właściciel praw: | © 2021 University of Białymstoku CC-BY-SA License ver. 3.0 or later |
| Występuje w kolekcji(ach): | Formalized Mathematics, 2021, Volume 29, Issue 3 |
Pliki w tej pozycji:
| Plik | Opis | Rozmiar | Format | |
|---|---|---|---|---|
| 10.2478_forma-2021-0013.pdf | 290,93 kB | Adobe PDF | Otwórz |
Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)
