REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/12385
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorCoghetto, Roland-
dc.date.accessioned2022-01-03T13:06:16Z-
dc.date.available2022-01-03T13:06:16Z-
dc.date.issued2021-
dc.identifier.citationFormalized Mathematics, Volume 29, Issue 2, Pages 69-76pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/12385-
dc.description.abstractIn this article we prove, using Mizar [2], [1], the Pappus’s hexagon theorem in the real projective plane: “Given one set of collinear points A, B, C, and another set of collinear points a, b, c, then the intersection points X, Y, Z of line pairs Ab and aB, Ac and aC, Bc and bC are collinear”2. More precisely, we prove that the structure ProjectiveSpace TOP-REAL3 [10] (where TOP-REAL3 is a metric space defined in [5]) satisfies the Pappus’s axiom defined in [11] by Wojciech Leonczuk and Krzysztof Prazmowski. Eugeniusz Kusak andWojciech Leonczuk formalized the Hessenberg theorem early in the MML [9]. With this result, the real projective plane is Desarguesian. For proving the Pappus’s theorem, two different proofs are given. First, we use the techniques developed in the section “Projective Proofs of Pappus’s Theorem” in the chapter “Pappos’s Theorem: Nine proofs and three variations” [12]. Secondly, Pascal’s theorem [4] is used. In both cases, to prove some lemmas, we use Prover93, the successor of the Otter prover and ott2miz by Josef Urban4 [13], [8], [7]. In Coq, the Pappus’s theorem is proved as the application of Grassmann-Cayley algebra [6] and more recently in Tarski’s geometry [3].pl
dc.description.sponsorshipThis work has been supported by the “Centre autonome de formation et de recherche en mathématiques et sciences avec assistants de preuve” ASBL (non-profit organization). Enterprise number: 0777.779.751. Belgium.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/-
dc.subjectPappus’s Hexagon Theorempl
dc.subjectreal projective planpl
dc.subjectGrassmann- Plücker relationpl
dc.subjectProver9pl
dc.titlePappus’s Hexagon Theorem in Real Projective Planepl
dc.typeArticlepl
dc.rights.holder© 2021 University of Białymstokupl
dc.rights.holderCC-BY-SA License ver. 3.0 or laterpl
dc.identifier.doi10.2478/forma-2021-0007-
dc.description.AffiliationRue de la Brasserie 5, 7100 La Louvière, Belgiumpl
dc.description.referencesGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: Stateof-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesGabriel Braun and Julien Narboux. A synthetic proof of Pappus’ theorem in Tarski’s geometry. Journal of Automated Reasoning, 58(2):23, 2017. doi:10.1007/s10817-016-9374-4.pl
dc.description.referencesRoland Coghetto. Pascal’s theorem in real projective plane. Formalized Mathematics, 25(2):107–119, 2017. doi:10.1515/forma-2017-0011.pl
dc.description.referencesAgata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599–603, 1991.pl
dc.description.referencesLaurent Fuchs and Laurent Thery. A formalization of Grassmann-Cayley algebra in Coq and its application to theorem proving in projective geometry. In Automated Deduction in Geometry, pages 51–67. Springer, 2010.pl
dc.description.referencesAdam Grabowski. Mechanizing complemented lattices within Mizar system. Journal of Automated Reasoning, 55:211–221, 2015. doi:10.1007/s10817-015-9333-5.pl
dc.description.referencesAdam Grabowski. Solving two problems in general topology via types. In Types for Proofs and Programs, International Workshop, TYPES 2004, Jouyen-Josas, France, December 15-18, 2004, Revised Selected Papers, pages 138–153, 2004. doi:10.1007/11617990 9. http://dblp.uni-trier.de/rec/bib/conf/types/Grabowski04.pl
dc.description.referencesEugeniusz Kusak and Wojciech Leonczuk. Hessenberg theorem. Formalized Mathematics, 2(2):217–219, 1991.pl
dc.description.referencesWojciech Leonczuk and Krzysztof Prazmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761–766, 1990.pl
dc.description.referencesWojciech Leonczuk and Krzysztof Prazmowski. Projective spaces – part I. Formalized Mathematics, 1(4):767–776, 1990.pl
dc.description.referencesJürgen Richter-Gebert. Pappos’s Theorem: Nine Proofs and Three Variations, pages 3–31. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-17286-1. doi:10.1007/978-3-642-17286-1_1.pl
dc.description.referencesPiotr Rudnicki and Josef Urban. Escape to ATP for Mizar. In First International Workshop on Proof eXchange for Theorem Proving-PxTP 2011, 2011.pl
dc.identifier.eissn1898-9934-
dc.description.volume29pl
dc.description.issue2pl
dc.description.firstpage69pl
dc.description.lastpage76pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-4901-0766-
Występuje w kolekcji(ach):Formalized Mathematics, 2021, Volume 29, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2021-0007.pdf298,71 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons