Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/11408
Tytuł: | Inverse Function Theorem. Part I |
Autorzy: | Nakasho, Kazuhisa Futa, Yuichi |
Słowa kluczowe: | inverse function theorem Lipschitz continuit differentiability implicit function inverse function |
Data wydania: | 2021 |
Data dodania: | 30-sie-2021 |
Wydawca: | DeGruyter Open |
Źródło: | Formalized Mathematics, Volume 29, Issue 1, Pages 9-19 |
Abstrakt: | In this article we formalize in Mizar [1], [2] the inverse function theorem for the class of C1 functions between Banach spaces. In the first section, we prove several theorems about open sets in real norm space, which are needed in the proof of the inverse function theorem. In the next section, we define a function to exchange the order of a product of two normed spaces, namely 𝔼 ↶ ≂ (x, y) ∈ X × Y ↦ (y, x) ∈ Y × X, and formalized its bijective isometric property and several differentiation properties. This map is necessary to change the order of the arguments of a function when deriving the inverse function theorem from the implicit function theorem proved in [6]. In the third section, using the implicit function theorem, we prove a theorem that is a necessary component of the proof of the inverse function theorem. In the last section, we finally formalized an inverse function theorem for class of C1 functions between Banach spaces. We referred to [9], [10], and [3] in the formalization. |
Afiliacja: | Kazuhisa Nakasho - Yamaguchi University, Yamaguchi, Japan Yuichi Futa - Tokyo University of Technology, Tokyo, Japan |
Sponsorzy: | This study has been supported in part by JSPS KAKENHI Grant Numbers JP20K19863 and JP17K00182. |
URI: | http://hdl.handle.net/11320/11408 |
DOI: | 10.2478/forma-2021-0002 |
ISSN: | 1426-2630 |
e-ISSN: | 1898-9934 |
metadata.dc.identifier.orcid: | 0000-0003-1110-4342 |
Typ Dokumentu: | Article |
metadata.dc.rights.uri: | https://creativecommons.org/licenses/by-sa/3.0/ |
Właściciel praw: | © 2021 University of Białymstoku CC-BY-SA License ver. 3.0 or later |
Występuje w kolekcji(ach): | Formalized Mathematics, 2021, Volume 29, Issue 1 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
10.2478_forma-2021-0002.pdf | 346,77 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL