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Summary. In this article we formalize in Mizar [1], [2] the inverse function
theorem for the class of C1 functions between Banach spaces. In the first section,
we prove several theorems about open sets in real norm space, which are needed in
the proof of the inverse function theorem. In the next section, we define a function
to exchange the order of a product of two normed spaces, namely Exh(x, y) ∈
X × Y 7→ (y, x) ∈ Y × X, and formalized its bijective isometric property and
several differentiation properties. This map is necessary to change the order of
the arguments of a function when deriving the inverse function theorem from the
implicit function theorem proved in [6].

In the third section, using the implicit function theorem, we prove a theorem
that is a necessary component of the proof of the inverse function theorem. In
the last section, we finally formalized an inverse function theorem for class of
C1 functions between Banach spaces. We referred to [9], [10], and [3] in the
formalization.
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1. Preliminaries

From now on S, T , W , Y denote real normed spaces, f , f1, f2 denote partial
functions from S to T , Z denotes a subset of S, and i, n denote natural numbers.

Now we state the propositions:
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(1) Let us consider real normed spaces X, Y, a partial function f from X

to Y, a subset A of X, and a subset B of Y. Suppose dom f = A and f is
continuous on A and A is open and B is open. Then f−1(B) is open.
Proof: For every point a of X such that a ∈ f−1(B) there exists a real
number s such that s > 0 and Ball(a, s) ⊆ f−1(B). �

(2) Let us consider real normed spaces X, Y, a point x of X, a point y of Y,
a point z of X × Y, and real numbers r1, r2. Suppose 0 < r1 and 0 < r2

and z = 〈〈x, y〉〉. Then there exists a real number s such that

(i) s = min(r1, r2), and

(ii) s > 0, and

(iii) Ball(z, s) ⊆ Ball(x, r1)× Ball(y, r2).

(3) Let us consider real normed spaces X, Y, and a subset V of X×Y. Then
V is open if and only if for every point x of X and for every point y of Y
such that 〈〈x, y〉〉 ∈ V there exist real numbers r1, r2 such that 0 < r1 and
0 < r2 and Ball(x, r1)× Ball(y, r2) ⊆ V .
Proof: For every point z of X × Y such that z ∈ V there exists a real
number s such that s > 0 and Ball(z, s) ⊆ V . �

(4) Let us consider real normed spaces X, Y, a subset V of X × Y, and
a subset D of X. Suppose D is open and V = D×(the carrier of Y ). Then
V is open.
Proof: For every point x of X and for every point y of Y such that 〈〈x,
y〉〉 ∈ V there exist real numbers r1, r2 such that 0 < r1 and 0 < r2 and
Ball(x, r1)× Ball(y, r2) ⊆ V . �

(5) Let us consider real normed spaces X, Y, a subset V of X × Y, and
a subset D of Y. Suppose D is open and V = (the carrier of X)×D. Then
V is open.
Proof: For every point x of X and for every point y of Y such that 〈〈x,
y〉〉 ∈ V there exist real numbers r1, r2 such that 0 < r1 and 0 < r2 and
Ball(x, r1)× Ball(y, r2) ⊆ V . �

2. A Map Reversing the Order of Product of Two Norm Spaces

Now we state the proposition:

(6) Let us consider real numbers x, y, and elements u, v of R2. Suppose
u = 〈x, y〉 and v = 〈y, x〉. Then |u| = |v|.

Let X, Y be real normed spaces. The functor Exch(X,Y ) yielding a linear
operator from X × Y into Y ×X is defined by
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(Def. 1) it is one-to-one, onto, and isometric and for every point x of X and for
every point y of Y, it(x, y) = 〈〈y, x〉〉.

Now we state the propositions:

(7) Let us consider real normed spaces X, Y, a subset Z of X × Y, and
objects x, y. Then 〈〈x, y〉〉 ∈ Z if and only if 〈〈y, x〉〉 ∈ (Exch(Y,X))−1(Z).

(8) Let us consider real normed spaces X, Y, a non empty set Z, a partial
function f from X × Y to Z, and a function I from Y × X into X × Y.
Suppose for every point y of Y for every point x of X, I(y, x) = 〈〈x, y〉〉.
Then

(i) dom(f · I) = I−1(dom f), and

(ii) for every point x of X and for every point y of Y, f ·I(y, x) = f(x, y).

Proof: For every object w, w ∈ dom(f · I) iff w ∈ I−1(dom f). �

(9) Let us consider real normed spaces X, Y, Z, a partial function f from Y

to Z, a linear operator I from X into Y, and a subset V of Y. Suppose f is
differentiable on V and I is one-to-one, onto, and isometric. Let us consider
a point y of Y. Suppose y ∈ V . Then (f ′�V )(y) = (f ·I ′�I−1(V ))/(I−1)(y) ·(I−1).
Proof: Consider J being a linear operator from Y into X such that
J = I−1 and J is one-to-one, onto, and isometric. Set g = f · I. Set U =
I−1(V ). For every point y of Y such that y ∈ dom(f ′�V ) holds (f ′�V )(y) =
(g′�U )/J(y) · (I−1) by [4, (31)]. �

(10) Let us consider real normed spaces X, Y, Z, a subset V of Y, a partial
function g from Y to Z, and a linear operator I from X into Y. Suppose
I is one-to-one, onto, and isometric and g is differentiable on V . Then g′�V
is continuous on V if and only if g · I ′�I−1(V ) is continuous on I−1(V ).
Proof: Consider J being a linear operator from Y into X such that
J = I−1 and J is one-to-one, onto, and isometric. Set f = g · I. Set
U = I−1(V ). Set F = f ′�U . Set G = g′�V . If G is continuous on V , then F

is continuous on U . If F is continuous on U , then G is continuous on V .
�

(11) Let us consider real normed spaces X, Y, Z, a partial function f from
X × Y to Z, a subset U of X × Y, and a function I from Y ×X into X ×
Y. Suppose for every point y of Y for every point x of X, I(y, x) = 〈〈x, y〉〉.
Let us consider a point a of X, a point b of Y, a point u of X × Y, and
a point v of Y ×X. Suppose u ∈ U and u = 〈〈a, b〉〉 and v = 〈〈b, a〉〉. Then

(i) f · (reproj1(u)) = f · I · (reproj2(v)), and

(ii) f · (reproj2(u)) = f · I · (reproj1(v)).

Proof: For every object x, x ∈ dom(f · (reproj1(u))) iff x ∈ dom(f · I ·
(reproj2(v))). For every object y, y ∈ dom(f · (reproj2(u))) iff y ∈ dom(f ·
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I · (reproj1(v))). For every object x such that x ∈ dom(f · (reproj1(u)))
holds (f · (reproj1(u)))(x) = (f · I · (reproj2(v)))(x). For every object y
such that y ∈ dom(f · (reproj2(u))) holds (f · (reproj2(u)))(y) = (f · I ·
(reproj1(v)))(y). �

Let us consider real normed spaces X, Y, Z, a partial function f from X ×
Y to Z, a subset U of X×Y, a linear operator I from Y ×X into X×Y, a point
a of X, a point b of Y, a point u of X × Y, and a point v of Y × X. Now we
state the propositions:

(12) Suppose U = dom f and f is differentiable on U and I is one-to-one,
onto, and isometric and for every point y of Y and for every point x of
X, I(y, x) = 〈〈x, y〉〉. Then suppose u ∈ U and u = 〈〈a, b〉〉 and v = 〈〈b, a〉〉.
Then

(i) f is partially differentiable in u w.r.t. 1 iff f · I is partially differen-
tiable in v w.r.t. 2, and

(ii) f is partially differentiable in u w.r.t. 2 iff f · I is partially differen-
tiable in v w.r.t. 1.

(13) Suppose U = dom f and f is differentiable on U and I is one-to-one,
onto, and isometric and for every point y of Y and for every point x of
X, I(y, x) = 〈〈x, y〉〉. Then suppose u ∈ U and u = 〈〈a, b〉〉 and v = 〈〈b, a〉〉.
Then

(i) partdiff(f, u) w.r.t. 1 = partdiff(f · I, v) w.r.t. 2, and

(ii) partdiff(f, u) w.r.t. 2 = partdiff(f · I, v) w.r.t. 1.

3. Properties of the Differentiation of the Inverse Mapping

Now we state the propositions:

(14) Let us consider a real normed space F , non trivial real Banach spaces G,
E, a subset Z of E × F , a partial function f from E × F to G, a point a
of E, a point b of F , a point c of G, and a point z of E ×F . Suppose Z is
open and dom f = Z and f is differentiable on Z and f ′�Z is continuous on
Z and 〈〈a, b〉〉 ∈ Z and f(a, b) = c and z = 〈〈a, b〉〉 and partdiff(f, z) w.r.t. 1
is invertible. Then there exist real numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1)× Ball(b, r2) ⊆ Z, and

(iv) for every point y of F such that y ∈ Ball(b, r2) there exists a point x
of E such that x ∈ Ball(a, r1) and f(x, y) = c, and
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(v) for every point y of F such that y ∈ Ball(b, r2) for every points x1, x2

of E such that x1, x2 ∈ Ball(a, r1) and f(x1, y) = c and f(x2, y) = c

holds x1 = x2, and

(vi) there exists a partial function g from F to E such that dom g =
Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2)
and g(b) = a and for every point y of F such that y ∈ Ball(b, r2) holds
f(g(y), y) = c and g is differentiable on Ball(b, r2) and g′�Ball(b,r2)

is
continuous on Ball(b, r2) and for every point y of F and for every
point z of E × F such that y ∈ Ball(b, r2) and z = 〈〈g(y), y〉〉 holds
g′(y) = −(Inv partdiff(f, z) w.r.t. 1) · (partdiff(f, z) w.r.t. 2) and for
every point y of F and for every point z of E × F such that y ∈
Ball(b, r2) and z = 〈〈g(y), y〉〉 holds partdiff(f, z) w.r.t. 1 is invertible,
and

(vii) for every partial functions g1, g2 from F to E such that dom g1 =
Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F such
that y ∈ Ball(b, r2) holds f(g1(y), y) = c and dom g2 = Ball(b, r2) and
rng g2 ⊆ Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2)
holds f(g2(y), y) = c holds g1 = g2.

Proof: Set I = Exch(F,E). Consider J being a linear operator from
E × F into F × E such that J = I−1 and J is one-to-one, onto, and
isometric. Set Z1 = J◦Z. Set f1 = f · I. dom f1 = I−1(dom f). Reconsider
z1 = 〈〈b, a〉〉 as a point of F × E. f1

′
�Z1 is continuous on Z1. f1(b, a) = c.

partdiff(f, z) w.r.t. 1 = partdiff(f1, z1) w.r.t. 2. Consider r2, r1 being real
numbers such that 0 < r2 and 0 < r1 and Ball(b, r2) × Ball(a, r1) ⊆ Z1

and for every point y of F such that y ∈ Ball(b, r2) there exists a point
x of E such that x ∈ Ball(a, r1) and f1(y, x) = c and for every point y
of F such that y ∈ Ball(b, r2) for every points x1, x2 of E such that x1,
x2 ∈ Ball(a, r1) and f1(y, x1) = c and f1(y, x2) = c holds x1 = x2 and
there exists a partial function g from F to E such that dom g = Ball(b, r2)
and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2) and g(b) = a and
for every point y of F such that y ∈ Ball(b, r2) holds f1(y, g(y)) = c.

g is differentiable on Ball(b, r2) and g′�Ball(b,r2)
is continuous on Ball(b, r2)

and for every point y of F and for every point z of F × E such that y ∈
Ball(b, r2) and z = 〈〈y, g(y)〉〉 holds g′(y) = −(Inv partdiff(f1, z) w.r.t. 2)·
(partdiff(f1, z) w.r.t. 1) and for every point y of F and for every point z of
F×E such that y ∈ Ball(b, r2) and z = 〈〈y, g(y)〉〉 holds partdiff(f1, z) w.r.t. 2
is invertible.

For every partial functions g1, g2 from F to E such that dom g1 =
Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F such that
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y ∈ Ball(b, r2) holds f1(y, g1(y)) = c and dom g2 = Ball(b, r2) and rng g2 ⊆
Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2) holds
f1(y, g2(y)) = c holds g1 = g2. For every object s such that s ∈ Ball(a, r1)×
Ball(b, r2) holds s ∈ Z. For every point y of F such that y ∈ Ball(b, r2)
there exists a point x of E such that x ∈ Ball(a, r1) and f(x, y) = c.

For every point y of F such that y ∈ Ball(b, r2) for every points x1,
x2 of E such that x1, x2 ∈ Ball(a, r1) and f(x1, y) = c and f(x2, y) =
c holds x1 = x2. There exists a partial function g from F to E such
that dom g = Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is continuous on
Ball(b, r2) and g(b) = a and for every point y of F such that y ∈ Ball(b, r2)
holds f(g(y), y) = c.

g is differentiable on Ball(b, r2) and g′�Ball(b,r2)
is continuous on Ball(b, r2)

and for every point y of F and for every point z of E × F such that y ∈
Ball(b, r2) and z = 〈〈g(y), y〉〉 holds g′(y) = −(Inv partdiff(f, z) w.r.t. 1)·
(partdiff(f, z) w.r.t. 2) and for every point y of F and for every point z of
E×F such that y ∈ Ball(b, r2) and z = 〈〈g(y), y〉〉 holds partdiff(f, z) w.r.t. 1
is invertible.

For every partial functions g1, g2 from F to E such that dom g1 =
Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F such that
y ∈ Ball(b, r2) holds f(g1(y), y) = c and dom g2 = Ball(b, r2) and rng g2 ⊆
Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2) holds
f(g2(y), y) = c holds g1 = g2. �

(15) Let us consider non trivial real Banach spaces E, F , a subset D of E,
a partial function f from E to F , a partial function f1 from E × F to F ,
and a subset Z of E × F . Suppose D is open and dom f = D and D 6= ∅
and f is differentiable on D and f ′�D is continuous on D and Z = D ×
(the carrier of F ) and dom f1 = Z and for every point s of E and for every
point t of F such that s ∈ D holds f1(s, t) = f/s − t. Then

(i) f1 is differentiable on Z, and

(ii) f1
′
�Z is continuous on Z, and

(iii) for every point x of E and for every point y of F and for every
point z of E × F such that x ∈ D and z = 〈〈x, y〉〉 there exists
a point I of the real norm space of bounded linear operators from
F into F such that I = idα and partdiff(f1, z) w.r.t. 1 = f ′(x) and
partdiff(f1, z) w.r.t. 2 = −I,

where α is the carrier of F .
Proof: Z is open. For every point z of E×F such that z ∈ Z holds f1 is
partially differentiable in z w.r.t. 1 and partdiff(f1, z) w.r.t. 1 = f ′((z)1).
For every point x0 of E×F and for every real number r such that x0 ∈ Z
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and 0 < r there exists a real number s such that 0 < s and for every point
x1 of E×F such that x1 ∈ Z and ‖x1−x0‖ < s holds ‖(f1 �1 Z)/x1−(f1 �1

Z)/x0‖ < r by [8, (15)]. Reconsider J = FuncUnit(F ) as a point of the real
norm space of bounded linear operators from F into F .

For every point z of E × F such that z ∈ Z holds f1 is partially
differentiable in z w.r.t. 2 and partdiff(f1, z) w.r.t. 2 = −J . For every point
x0 of E×F and for every real number r such that x0 ∈ Z and 0 < r there
exists a real number s such that 0 < s and for every point x1 of E×F such
that x1 ∈ Z and ‖x1 − x0‖ < s holds ‖(f1 �2 Z)/x1 − (f1 �2 Z)/x0‖ < r.
For every point x of E and for every point y of F and for every point z of
E × F such that x ∈ D and z = 〈〈x, y〉〉 there exists a point I of the real
norm space of bounded linear operators from F into F such that I = idα
and partdiff(f1, z) w.r.t. 1 = f ′(x) and partdiff(f1, z) w.r.t. 2 = −I, where
α is the carrier of F . �

(16) Let us consider non trivial real Banach spaces E, F , a subset Z of E,
a partial function f from E to F , a point a of E, and a point b of F .
Suppose Z is open and dom f = Z and f is differentiable on Z and f ′�Z
is continuous on Z and a ∈ Z and f(a) = b and f ′(a) is invertible. Then
there exist real numbers r1, r2 such that

(i) 0 < r1, and

(ii) 0 < r2, and

(iii) Ball(a, r1) ⊆ Z, and

(iv) for every point y of F such that y ∈ Ball(b, r2) there exists a point x
of E such that x ∈ Ball(a, r1) and f/x = y, and

(v) for every point y of F such that y ∈ Ball(b, r2) for every points x1, x2

of E such that x1, x2 ∈ Ball(a, r1) and f/x1 = y and f/x2 = y holds
x1 = x2, and

(vi) there exists a partial function g from F to E such that dom g =
Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2)
and g(b) = a and for every point y of F such that y ∈ Ball(b, r2)
holds f/g/y = y and g is differentiable on Ball(b, r2) and g′�Ball(b,r2)
is continuous on Ball(b, r2) and for every point y of F such that
y ∈ Ball(b, r2) holds g′(y) = Inv f ′(g/y) and for every point y of F
such that y ∈ Ball(b, r2) holds f ′(g/y) is invertible, and

(vii) for every partial functions g1, g2 from F to E such that dom g1 =
Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F such
that y ∈ Ball(b, r2) holds f/g1(y) = y and dom g2 = Ball(b, r2) and
rng g2 ⊆ Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2)
holds f/g2(y) = y holds g1 = g2.
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Proof: Reconsider Z = D × (the carrier of F ) as a subset of E × F . Z
is open. Define P[object, object] ≡ there exists a point x of E and there
exists a point y of F such that $1 = 〈〈x, y〉〉 and $2 = f/x − y. For every
object z such that z ∈ Z there exists an object y such that y ∈ the carrier
of F and P[z, y].

Consider f1 being a function from Z into the carrier of F such that for
every object x such that x ∈ Z holds P[x, f1(x)]. For every point s of E and
for every point t of F such that s ∈ D holds f1(s, t) = f/s − t. Reconsider
z = 〈〈a, b〉〉 as a point of E×F . f1 is differentiable on Z. f1

′
�Z is continuous

on Z. There exists a point J of the real norm space of bounded linear
operators from F into F such that J = idα and partdiff(f1, z) w.r.t. 1 =
f ′(a) and partdiff(f1, z) w.r.t. 2 = −J , where α is the carrier of F .

Consider r1, r2 being real numbers such that 0 < r1 and 0 < r2

and Ball(a, r1) × Ball(b, r2) ⊆ Z and for every point x of F such that
x ∈ Ball(b, r2) there exists a point y of E such that y ∈ Ball(a, r1) and
f1(y, x) = 0F and for every point x of F such that x ∈ Ball(b, r2) for
every points y1, y2 of E such that y1, y2 ∈ Ball(a, r1) and f1(y1, x) = 0F
and f1(y2, x) = 0F holds y1 = y2 and there exists a partial function g

from F to E such that dom g = Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is
continuous on Ball(b, r2) and g(b) = a and for every point x of F such that
x ∈ Ball(b, r2) holds f1(g(x), x) = 0F and g is differentiable on Ball(b, r2).

g′�Ball(b,r2)
is continuous on Ball(b, r2) and for every point y of F and

for every point z of E × F such that y ∈ Ball(b, r2) and z = 〈〈g(y),
y〉〉 holds g′(y) = −(Inv partdiff(f1, z) w.r.t. 1) · (partdiff(f1, z) w.r.t. 2) and
for every point y of F and for every point z of E × F such that y ∈
Ball(b, r2) and z = 〈〈g(y), y〉〉 holds partdiff(f1, z) w.r.t. 1 is invertible and
for every partial functions g1, g2 from F to E such that dom g1 = Ball(b, r2)
and rng g1 ⊆ Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2)
holds f1(g1(y), y) = 0F and dom g2 = Ball(b, r2) and rng g2 ⊆ Ball(a, r1)
and for every point y of F such that y ∈ Ball(b, r2) holds f1(g2(y), y) = 0F
holds g1 = g2. For every object s such that s ∈ Ball(a, r1) holds s ∈ D.
For every point y of F such that y ∈ Ball(b, r2) there exists a point x of
E such that x ∈ Ball(a, r1) and f/x = y. For every point y of F such that
y ∈ Ball(b, r2) for every points x1, x2 of E such that x1, x2 ∈ Ball(a, r1)
and f/x1 = y and f/x2 = y holds x1 = x2.

There exists a partial function g from F to E such that dom g =
Ball(b, r2) and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2) and
g(b) = a and for every point y of F such that y ∈ Ball(b, r2) holds
f/g/y = y and g is differentiable on Ball(b, r2) and g′�Ball(b,r2)

is continuous
on Ball(b, r2) and for every point y of F such that y ∈ Ball(b, r2) holds
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g′(y) = Inv f ′(g/y) and for every point y of F such that y ∈ Ball(b, r2) holds
f ′(g/y) is invertible by (15), [5, (26),(27)]. For every partial functions g1,
g2 from F to E such that dom g1 = Ball(b, r2) and rng g1 ⊆ Ball(a, r1)
and for every point y of F such that y ∈ Ball(b, r2) holds f/g1(y) = y and
dom g2 = Ball(b, r2) and rng g2 ⊆ Ball(a, r1) and for every point y of F
such that y ∈ Ball(b, r2) holds f/g2(y) = y holds g1 = g2. �

4. Inverse Function Theorem for Class of C1 Functions

Now we state the propositions:

(17) Let us consider non trivial real Banach spaces E, F , a subset Z of E,
a partial function f from E to F , a point a of E, and a point b of F .
Suppose Z is open and dom f = Z and f is differentiable on Z and f ′�Z is
continuous on Z and a ∈ Z and f(a) = b and f ′(a) is invertible.

Then there exists a subset A of E and there exists a subset B of F and
there exists a partial function g from F to E such that A is open and B is
open and A ⊆ dom f and a ∈ A and b ∈ B and f◦A = B and dom g = B

and rng g = A and dom(f�A) = A and rng(f�A) = B and f�A is one-to-
one and g is one-to-one and g = (f�A)−1 and f�A = g−1 and g(b) = a and
g is continuous on B and differentiable on B and g′�B is continuous on B

and for every point y of F such that y ∈ B holds f ′(g/y) is invertible and
for every point y of F such that y ∈ B holds g′(y) = Inv f ′(g/y).
Proof: Consider r1, r2 being real numbers such that 0 < r1 and 0 < r2

and Ball(a, r1) ⊆ Z and for every point y of F such that y ∈ Ball(b, r2)
there exists a point x of E such that x ∈ Ball(a, r1) and f/x = y and for
every point y of F such that y ∈ Ball(b, r2) for every points x1, x2 of E
such that x1, x2 ∈ Ball(a, r1) and f/x1 = y and f/x2 = y holds x1 = x2 and
there exists a partial function g from F to E such that dom g = Ball(b, r2)
and rng g ⊆ Ball(a, r1) and g is continuous on Ball(b, r2) and g(b) = a and
for every point y of F such that y ∈ Ball(b, r2) holds f/g/y = y.

g is differentiable on Ball(b, r2) and g′�Ball(b,r2)
is continuous on Ball(b, r2)

and for every point y of F such that y ∈ Ball(b, r2) holds g′(y) = Inv f ′(g/y)
and for every point y of F such that y ∈ Ball(b, r2) holds f ′(g/y) is in-
vertible and for every partial functions g1, g2 from F to E such that
dom g1 = Ball(b, r2) and rng g1 ⊆ Ball(a, r1) and for every point y of F
such that y ∈ Ball(b, r2) holds f/g1(y) = y and dom g2 = Ball(b, r2) and
rng g2 ⊆ Ball(a, r1) and for every point y of F such that y ∈ Ball(b, r2)
holds f/g2(y) = y holds g1 = g2.

Consider I1 being a partial function from F to E such that dom I1 =
Ball(b, r2) and rng I1 ⊆ Ball(a, r1) and I1 is continuous on Ball(b, r2)
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and I1(b) = a and for every point y of F such that y ∈ Ball(b, r2)
holds f/I1/y = y and I1 is differentiable on Ball(b, r2) and I1

′
�Ball(b,r2)

is continuous on Ball(b, r2) and for every point y of F such that y ∈
Ball(b, r2) holds I1

′(y) = Inv f ′(I1/y) and for every point y of F such
that y ∈ Ball(b, r2) holds f ′(I1/y) is invertible. Set B = Ball(b, r2). Set
A = Ball(a, r1) ∩ f−1(B). For every object s such that s ∈ B holds
s ∈ f◦Ball(a, r1). f−1(B) is open. For every object s, s ∈ f◦A iff s ∈ B.

For every objects y1, y2 such that y1, y2 ∈ dom I1 and I1(y1) = I1(y2)
holds y1 = y2. For every objects x1, x2 such that x1, x2 ∈ dom(f�A)
and (f�A)(x1) = (f�A)(x2) holds x1 = x2. For every object x such that
x ∈ dom((f�A)−1) holds ((f�A)−1)(x) = I1(x). �

(18) Let us consider non trivial real Banach spaces E, F , a subset Z of E,
a partial function f from E to F , a point a of E, and a point b of F .
Suppose Z is open and dom f = Z and f is differentiable on Z and f ′�Z
is continuous on Z and a ∈ Z and f(a) = b and f ′(a) is invertible. Let
us consider a real number r1. Suppose 0 < r1. Then there exists a real
number r2 such that

(i) 0 < r2, and

(ii) Ball(b, r2) ⊆ f◦Ball(a, r1).

The theorem is a consequence of (17) and (1).

(19) Let us consider non trivial real Banach spaces E, F , a subset Z of E,
and a partial function f from E to F . Suppose Z is open and dom f = Z

and f is differentiable on Z and f ′�Z is continuous on Z and for every point
x of E such that x ∈ Z holds f ′(x) is invertible. Then

(i) for every point x of E and for every real number r1 such that x ∈ Z
and 0 < r1 there exists a point y of F and there exists a real number
r2 such that y = f(x) and 0 < r2 and Ball(y, r2) ⊆ f◦Ball(x, r1),
and

(ii) f◦Z is open.

Proof: For every point x of E and for every real number r1 such that
x ∈ Z and 0 < r1 there exists a point y of F and there exists a real
number r2 such that y = f(x) and 0 < r2 and Ball(y, r2) ⊆ f◦Ball(x, r1).
For every point y of F such that y ∈ f◦Z there exists a real number r
such that 0 < r and Ball(y, r) ⊆ f◦Z by [7, (20)]. �
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