Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/11407| Tytuł: | Derivation of Commutative Rings and the Leibniz Formula for Power of Derivation |
| Autorzy: | Watase, Yasushige |
| Słowa kluczowe: | derivation Leibniz Formula derivation of polynomial ring |
| Data wydania: | 2021 |
| Data dodania: | 30-sie-2021 |
| Wydawca: | DeGruyter Open |
| Źródło: | Formalized Mathematics, Volume 29, Issue 1, Pages 1-8 |
| Abstrakt: | In this article we formalize in Mizar [1], [2] a derivation of commutative rings, its definition and some properties. The details are to be referred to [5], [7]. A derivation of a ring, say D, is defined generally as a map from a commutative ring A to A-Module M with specific conditions. However we start with simpler case, namely dom D = rng D. This allows to define a derivation in other rings such as a polynomial ring. A derivation is a map D : A → A satisfying the following conditions: (i) D(x + y) = Dx + Dy, (ii) D(xy) = xDy + yDx, ∀x, y ∈ A. Typical properties are formalized such as: D(∑i=1nxi)=∑i=1nDxi and D(∏i=1nxi)=∑i=1nx1x2⋯Dxi⋯xn(∀xi∈A). We also formalized the Leibniz Formula for power of derivation D : Dn(xy)=∑i=0n(in)DixDn-iy. Lastly applying the definition to the polynomial ring of A and a derivation of polynomial ring was formalized. We mentioned a justification about compatibility of the derivation in this article to the same object that has treated as differentiations of polynomial functions [3]. |
| Afiliacja: | Suginami-ku Matsunoki, 3-21-6 Tokyo, Japan |
| URI: | http://hdl.handle.net/11320/11407 |
| DOI: | 10.2478/forma-2021-0001 |
| ISSN: | 1426-2630 |
| e-ISSN: | 1898-9934 |
| Typ Dokumentu: | Article |
| metadata.dc.rights.uri: | https://creativecommons.org/licenses/by-sa/3.0/ |
| Właściciel praw: | © 2021 University of Białymstoku CC-BY-SA License ver. 3.0 or later |
| Występuje w kolekcji(ach): | Formalized Mathematics, 2021, Volume 29, Issue 1 |
Pliki w tej pozycji:
| Plik | Opis | Rozmiar | Format | |
|---|---|---|---|---|
| 10.2478_forma-2021-0001.pdf | 334,53 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL
