Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/10981
Tytuł: | Partial Correctness of an Algorithm Computing Lucas Sequences |
Autorzy: | Jaszczak, Adrian |
Słowa kluczowe: | nominative data program verification Lucas sequences |
Data wydania: | 2020 |
Data dodania: | 24-maj-2021 |
Wydawca: | DeGruyter Open |
Źródło: | Formalized Mathematics, Volume 28, Issue 4, Pages 279-288 |
Abstrakt: | In this paper we define some properties about finite sequences and verify the partial correctness of an algorithm computing n-th element of Lucas sequence [23], [20] with given P and Q coefficients as well as two first elements (x and y). The algorithm is encoded in nominative data language [22] in the Mizar system [3], [1]. i := 0 s := x b := y c := x while (i <> n) c := s s := b ps := p*s qc := q*c b := ps − qc i := i + j return s This paper continues verification of algorithms [10], [14], [12], [15], [13] written in terms of simple-named complex-valued nominative data [6], [8], [19], [11], [16], [17]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and post-conditions [18], [21], [7], [5]. |
Afiliacja: | Institute of Informatics, University of Białystok, Poland |
URI: | http://hdl.handle.net/11320/10981 |
DOI: | 10.2478/forma-2020-0025 |
ISSN: | 1426-2630 |
e-ISSN: | 1898-9934 |
metadata.dc.identifier.orcid: | 0000-0003-4899-4983 |
Typ Dokumentu: | Article |
metadata.dc.rights.uri: | https://creativecommons.org/licenses/by-sa/3.0/ |
Właściciel praw: | © 2020 University of Białymstoku; CC-BY-SA License ver. 3.0 or later; |
Występuje w kolekcji(ach): | Artykuły naukowe (WInf) Formalized Mathematics, 2020, Volume 28, Issue 4 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
10.2478_forma-2020-0025.pdf | 288,22 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL