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Partial Correctness of an Algorithm
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Poland

Summary. In this paper we define some properties about finite sequences
and verify the partial correctness of an algorithm computing n-th element of
Lucas sequence [23], [20] with given P and Q coefficients as well as two first
elements (x and y). The algorithm is encoded in nominative data language [22]
in the Mizar system [3], [1].

i := 0
s := x
b := y
c := x
while (i <> n)
c := s
s := b
ps := p*s
qc := q*c
b := ps - qc
i := i + j

return s

This paper continues verification of algorithms [10], [14], [12], [15], [13] writ-
ten in terms of simple-named complex-valued nominative data [6], [8], [19], [11],
[16], [17]. The validity of the algorithm is presented in terms of semantic Floyd-
Hoare triples over such data [9]. Proofs of the correctness are based on an in-
ference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and
post-conditions [18], [21], [7], [5].
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1. Introduction about Finite Sequences

Let n be a natural number and f be an n-element finite sequence. One can
verify that f� Seg n reduces to f .

Let A, B be sets and f1, f2, f3, f4, f5, f6 be partial functions from A to B.
One can check that 〈〈f1, f2, f3, f4, f5, f6〉〉 is (A→̇B)-valued.

Let V , A be sets and f1, f2, f3, f4, f5, f6 be binominative functions over
simple-named complex-valued nominative date of V and A.

Observe that 〈〈f1, f2, f3, f4, f5, f6〉〉 is (FPrg(NDSC(V,A)))-valued.
Let a1, a2, a3, a4, a5, a6 be objects. One can verify that 〈〈a1, a2, a3, a4, a5, a6〉〉(1)

reduces to a1 and 〈〈a1, a2, a3, a4, a5, a6〉〉(2) reduces to a2.
And 〈〈a1, a2, a3, a4, a5, a6〉〉(3) reduces to a3 and 〈〈a1, a2, a3, a4, a5, a6〉〉(4) redu-

ces to a4 and 〈〈a1, a2, a3, a4, a5, a6〉〉(5) reduces to a5 and 〈〈a1, a2, a3, a4, a5, a6〉〉(6)
reduces to a6.

Let a1, a2, a3, a4, a5, a6, a7, a8, a9 be objects. The functor 〈〈a1, a2, a3, a4, a5, a6,
a7, a8, a9〉〉 yielding a finite sequence is defined by the term

(Def. 1) 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 a 〈a9〉.
Now we state the proposition:

(1) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9, and a finite
sequence f . Then f = 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉 if and only if len f =
9 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and f(5) = a5
and f(6) = a6 and f(7) = a7 and f(8) = a8 and f(9) = a9.

Let a1, a2, a3, a4, a5, a6, a7, a8, a9 be objects. Let us observe that 〈〈a1, a2, a3, a4,
a5, a6, a7, a8, a9〉〉 is 9-element.

Let us observe that 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(1) reduces to a1 and 〈〈a1, a2,
a3, a4, a5, a6, a7, a8, a9〉〉(2) reduces to a2 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(3)
reduces to a3 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(4) reduces to a4.

And 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(5) reduces to a5 and 〈〈a1, a2, a3, a4, a5, a6,
a7, a8, a9〉〉(6) reduces to a6 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(7) reduces to a7
and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(8) reduces to a8 and 〈〈a1, a2, a3, a4, a5, a6, a7,
a8, a9〉〉(9) reduces to a9.

Now we state the proposition:

(2) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9. Then rng 〈〈a1, a2, a3,
a4, a5, a6, a7, a8, a9〉〉 = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

Let X be a non empty set and a1, a2, a3, a4, a5, a6, a7, a8, a9 be elements of
X. Note that the functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉 yields a finite sequence
of elements of X. Let a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be objects. The
functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 yielding a finite sequence is defined
by the term
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(Def. 2) 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉 a 〈a10〉.
Now we state the proposition:

(3) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, and a finite
sequence f . Then f = 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 if and only if
len f = 10 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and
f(5) = a5 and f(6) = a6 and f(7) = a7 and f(8) = a8 and f(9) = a9 and
f(10) = a10. The theorem is a consequence of (1).

Let a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be objects. One can check that
〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 is 10-element.

Let us observe that 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(1) reduces to a1 and
〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(2) reduces to a2 and 〈〈a1, a2, a3, a4, a5, a6, a7,
a8, a9, a10〉〉(3) reduces to a3 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(4) reduces
to a4 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(5) reduces to a5.

And 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(6) reduces to a6 and 〈〈a1, a2, a3, a4, a5,
a6, a7, a8, a9, a10〉〉(7) reduces to a7 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(8) re-
duces to a8 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(9) reduces to a9 and 〈〈a1, a2, a3,
a4, a5, a6, a7, a8, a9, a10〉〉(10) reduces to a10.

Now we state the proposition:

(4) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9, a10. Then
rng 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}.
The theorem is a consequence of (2).

LetX be a non empty set and a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be elements
of X. One can verify that the functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 yields
a finite sequence of elements of X.

2. Lucas Sequences

Let i, j be integers. Let us observe that the functor 〈〈i, j〉〉 yields an element of
Z×Z. From now on x, y, P ,Q denote integers, a, b, n denote natural numbers, V ,
A denote sets, val denotes a function, loc denotes a V-valued function, d1 denotes
a non-atomic nominative data of V and A, p denotes a partial predicate over
simple-named complex-valued nominative data of V and A, d denotes an object,
z denotes an element of V .
T denotes a nominative data with simple names from V and complex values

from A, s0 denotes a non zero natural number, x0, y0, p0, q0 denote integers,
and n0 denotes a natural number.

Let us consider x, y, P , and Q. The functor LucasSeq(x, y, P,Q) yielding
a sequence of Z× Z is defined by
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(Def. 3) it(0) = 〈〈x, y〉〉 and for every natural number n, it(n + 1) = 〈〈(it(n))2,
P · ((it(n))2)−Q · ((it(n))1)〉〉.

Let us consider n. The functor Lucas(x, y, P,Q, n) yielding an element of Z
is defined by the term

(Def. 4) ((LucasSeq(x, y, P,Q))(n))1.

Now we state the propositions:

(5) (i) Lucas(x, y, P,Q, 0) = x, and

(ii) Lucas(x, y, P,Q, 1) = y, and

(iii) for every n, Lucas(x, y, P,Q, n+ 2) = P · (Lucas(x, y, P,Q, n+ 1))−
Q · (Lucas(x, y, P,Q, n)).

(6) LucasSeq(0, 1, 1,−1) = Fib.
Proof: Set L = LucasSeq(0, 1, 1,−1). Set F = Fib. Define P[natural
number] ≡ L($1) = F ($1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(7) Lucas(0, 1, 1,−1, n) = Fib(n).

(8) LucasSeq(a, b, 1,−1) = GenFib(a, b).
Proof: Set L = LucasSeq(a, b, 1,−1). Set F = GenFib(a, b). Define
P[natural number] ≡ L($1) = F ($1). For every natural number k such
that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(9) Lucas(a, b, 1,−1, n) = GFib(a, b, n).

(10) LucasSeq(2, 1, 1,−1) = Lucas.
Proof: Set L = LucasSeq(2, 1, 1,−1). Set F = Lucas. Define P[natural
number] ≡ L($1) = F ($1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(11) Lucas(2, 1, 1,−1, n) = Luc(n).

3. Main Algorithm

Now we state the proposition:

(12) Suppose Seg 10 ⊆ dom loc and loc is valid w.r.t. d1. Then {loc/1, loc/2,
loc/3, loc/4, loc/5, loc/6, loc/7, loc/8, loc/9, loc/10} ⊆ dom d1.

Let us consider V , A, and loc. The functor LucasLoopBody(A, loc) yielding
a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 5) PP-composition(Asg(loc/6)((loc/4)⇒a),Asg(loc/4)((loc/5)⇒a),Asg(loc/9)

(multiplication(A, loc/7, loc/4)),Asg(loc/10)(multiplication(A, loc/8, loc/6)),
Asg(loc/5)(subtraction(A, (loc/9), (loc/10))),Asg(loc/1)(addition(A, loc/1,
loc/2))).
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The functor LucasMainLoop(A, loc) yielding a binominative function over
simple-named complex-valued nominative data of V and A is defined by the
term

(Def. 6) WH(¬Equality(A, loc/1, loc/3),LucasLoopBody(A, loc)).

Let us consider val. The functor LucasMainPart(A, loc, val) yielding a bino-
minative function over simple-named complex-valued nominative data of V and
A is defined by the term

(Def. 7) initial-assignments(A, loc, val, 10) • (LucasMainLoop(A, loc)).

Let us consider z. The functor LucasProg(A, loc, val, z) yielding a binomi-
native function over simple-named complex-valued nominative data of V and A
is defined by the term

(Def. 8) LucasMainPart(A, loc, val) • (Asgz((loc/4)⇒a)).
Let us consider x0, y0, p0, q0, and n0. The functor LucasInp(x0, y0, p0, q0, n0)

yielding a finite sequence is defined by the term

(Def. 9) 〈〈0, 1, n0, x0, y0, x0, p0, q0, 0, 0〉〉.
Observe that LucasInp(x0, y0, p0, q0, n0) is 10-element.
Let us consider V , A, and d. Let val be a finite sequence. We say that x0,

y0, p0, q0, n0 and d constitute a valid Lucas input w.r.t. V , A and val if and
only if

(Def. 10) LucasInp(x0, y0, p0, q0, n0) is a valid input of V , A, val and d.

The functor validLucasInp(V,A, val, x0, y0, p0, q0, n0) yielding a partial pre-
dicate over simple-named complex-valued nominative data of V and A is defined
by the term

(Def. 11) ValInp(V,A, val,LucasInp(x0, y0, p0, q0, n0)).

One can check that validLucasInp(V,A, val, x0, y0, p0, q0, n0) is total.
Let us consider z and d. We say that x0, y0, p0, q0, n0 and d constitute a

valid Lucas output w.r.t. A and z if and only if

(Def. 12) 〈Lucas(x0, y0, p0, q0, n0)〉 is a valid output of V , A, 〈z〉 and d.

The functor validLucasOut(A, z, x0, y0, p0, q0, n0) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by
the term

(Def. 13) ValOut(V,A, z,Lucas(x0, y0, p0, q0, n0)).

Let us consider loc and d. We say that x0, y0, p0, q0, n0 and d constitute a
Lucas inverse w.r.t. A and loc if and only if

(Def. 14) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and {loc/1, loc/2, loc/3, loc/4, loc/5, loc/6, loc/7, loc/8, loc/9, loc/10} ⊆
dom d1 and d1(loc/2) = 1 and d1(loc/3) = n0 and d1(loc/7) = p0 and



284 adrian jaszczak

d1(loc/8) = q0 and there exists a natural number I such that I = d1(loc/1)
and d1(loc/4) = Lucas(x0, y0, p0, q0, I) and d1(loc/5) =
Lucas(x0, y0, p0, q0, I + 1).

The functor LucasInv(A, loc, x0, y0, p0, q0, n0) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by

(Def. 15) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if x0, y0, p0, q0, n0 and d constitute a Lucas inverse w.r.t. A and loc, then
it(d) = true and if x0, y0, p0, q0, n0 and d do not constitute a Lucas
inverse w.r.t. A and loc, then it(d) = false.

Let us observe that LucasInv(A, loc, x0, y0, p0, q0, n0) is total. Let us consider
a 10-element finite sequence val. Now we state the propositions:

(13) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and Seg 10 ⊆ dom loc and loc� Seg 10 is one-to-one and loc and
val are different w.r.t. 10.

Then validLucasInp(V,A, val, x0, y0, p0, q0, n0) |= (ScPsuperposSeq(loc,
val,LucasInv(A, loc, x0, y0, p0, q0, n0)))(len ScPsuperposSeq(loc, val,Lucas-
Inv(A, loc, x0, y0, p0, q0, n0))).
Proof: Set s0 = 10. Set n = loc/3. Set i0 = LucasInp(x0, y0, p0, q0, n0).
Consider d1 being a non-atomic nominative data of V and A such that
d = d1 and val is valid w.r.t. d1 and for every natural number n such that
1 ¬ n ¬ len i0 holds d1(val(n)) = i0(n).

Set F = LocalOverlapSeq(A, loc, val, d1, s0). Reconsider L6 = F (10)
as a non-atomic nominative data of V and A. x0, y0, p0, q0, n0 and L6
constitute a Lucas inverse w.r.t. A and loc. �

(14) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and Seg 10 ⊆ dom loc and loc� Seg 10 is one-to-one and loc and
val are different w.r.t. 10. Then 〈validLucasInp(V,A, val, x0, y0, p0, q0, n0),
initial-assignments(A, loc, val, 10),LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an
SFHT of NDSC(V,A). The theorem is a consequence of (13).

(15) Suppose V is not empty and A is complex containing and V is without
nonatomic nominative data w.r.t.A and d1 ∈ dom(LucasLoopBody(A, loc))
and loc is valid w.r.t. d1 and Seg 10 ⊆ dom loc and for every T , T is a value
on loc/1 and T is a value on loc/2 and T is a value on loc/4 and T is a value
on loc/6 and T is a value on loc/7 and T is a value on loc/8 and T is a value
on loc/9 and T is a value on loc/10.

Then 〈〈(loc/4)⇒a, (loc/5)⇒a,multiplication(A, loc/7, loc/4),multiplica-
tion(A, loc/8, loc/6), subtraction(A, (loc/9), (loc/10)), addition(A, loc/1,
loc/2)〉〉 is domain closed w.r.t. loc, d1 and 〈〈6, 4, 9, 10, 5, 1〉〉. The theorem is
a consequence of (12).
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Let us consider a non empty set V and a V-valued, 10-element finite sequence
loc. Now we state the propositions:

(16) Suppose A is complex containing and V is without nonatomic nominative
data w.r.t. A and for every nominative data T with simple names from V
and complex values from A, T is a value on loc/1 and T is a value on loc/2
and T is a value on loc/4 and T is a value on loc/6 and T is a value on
loc/7 and T is a value on loc/8 and T is a value on loc/9 and T is a value
on loc/10 and loc is one-to-one. Then 〈LucasInv(A, loc, x0, y0, p0, q0, n0),
LucasLoopBody(A, loc),LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an SFHT of
NDSC(V,A). The theorem is a consequence of (15) and (5).

(17) Suppose A is complex containing and V is without nonatomic nominative
data w.r.t. A and for every nominative data T with simple names from V
and complex values from A, T is a value on loc/1 and T is a value on loc/2
and T is a value on loc/4 and T is a value on loc/6 and T is a value on
loc/7 and T is a value on loc/8 and T is a value on loc/9 and T is a value
on loc/10 and loc is one-to-one.

Then 〈LucasInv(A, loc, x0, y0, p0, q0, n0),LucasMainLoop(A, loc),Equa-
lity(A, loc/1, loc/3)∧LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an SFHT of NDSC
(V,A). The theorem is a consequence of (16).

(18) Let us consider a non empty set V , a V-valued, 10-element finite se-
quence loc, and a 10-element finite sequence val. Suppose A is complex
containing and V is without nonatomic nominative data w.r.t. A and for
every nominative data T with simple names from V and complex values
from A, T is a value on loc/1 and T is a value on loc/2 and T is a value on
loc/4 and T is a value on loc/6 and T is a value on loc/7 and T is a value
on loc/8 and T is a value on loc/9 and T is a value on loc/10 and loc is
one-to-one and loc and val are different w.r.t. 10.

Then 〈validLucasInp(V,A, val, x0, y0, p0, q0, n0),LucasMainPart(A, loc,
val),Equality(A, loc/1, loc/3)∧LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an SFHT
of NDSC(V,A). The theorem is a consequence of (14) and (17).

(19) Suppose V is not empty and V is without nonatomic nominative da-
ta w.r.t. A and for every T , T is a value on loc/1 and T is a value on
loc/3. Then Equality(A, loc/1, loc/3) ∧ LucasInv(A, loc, x0, y0, p0, q0, n0) |=
SP(validLucasOut(A, z, x0, y0, p0, q0, n0), (loc/4)⇒a, z).
Proof: Set i = loc/1. Set j = loc/2. Set n = loc/3. Set s = loc/4. Set
b = loc/5. Set c = loc/6. Set p = loc/7. Set q = loc/8. Set p1 = loc/9. Set
q1 = loc/10. Set D12 = s⇒a. Set E1 = {i, j, n, s, b, c, p, q, p1, q1}.

Consider d1 being a non-atomic nominative data of V and A such that
d = d1 and E1 ⊆ dom d1 and d1(j) = 1 and d1(n) = n0 and d1(p) = p0
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and d1(q) = q0 and there exists a natural number I such that I = d1(i)
and d1(s) = Lucas(x0, y0, p0, q0, I) and d1(b) = Lucas(x0, y0, p0, q0, I + 1).

Reconsider d2 = d as a nominative data with simple names from V
and complex values from A. Set L = d2∇zaD12(d2). x0, y0, p0, q0, n0 and
L constitute a valid Lucas output w.r.t. A and z. �

(20) Suppose V is not empty and V is without nonatomic nominative da-
ta w.r.t. A and for every T , T is a value on loc/1 and T is a value on
loc/3. Then 〈Equality(A, loc/1, loc/3) ∧ LucasInv(A, loc, x0, y0, p0, q0, n0),
Asgz((loc/4)⇒a), validLucasOut(A, z, x0, y0, p0, q0, n0)〉 is an SFHT of N-
DSC(V,A). The theorem is a consequence of (19).

(21) Suppose for every T , T is a value on loc/1 and T is a value on loc/3.
Then 〈∼ (Equality(A, loc/1, loc/3) ∧ LucasInv(A, loc, x0, y0, p0, q0, n0)),
Asgz((loc/4)⇒a), validLucasOut(A, z, x0, y0, p0, q0, n0)〉 is an SFHT of N-
DSC(V,A).

(22) Partial correctness of a Lucas algorithm:
Let us consider a non empty set V , a V-valued, 10-element finite sequence
loc, a 10-element finite sequence val, and an element z of V . Suppose A is
complex containing and V is without nonatomic nominative data w.r.t. A
and for every nominative data T with simple names from V and complex
values from A, T is a value on loc/1 and T is a value on loc/2 and T is
a value on loc/3 and T is a value on loc/4 and T is a value on loc/6 and T
is a value on loc/7 and T is a value on loc/8 and T is a value on loc/9 and
T is a value on loc/10 and loc is one-to-one and loc and val are different
w.r.t. 10.

Then 〈validLucasInp(V,A, val, x0, y0, p0, q0, n0),LucasProg(A, loc, val,
z), validLucasOut(A, z, x0, y0, p0, q0, n0)〉 is an SFHT of NDSC(V,A). The
theorem is a consequence of (18), (20), and (21).
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