Partial Correctness of an Algorithm Computing Lucas Sequences

Adrian Jaszczak ${ }^{(0)}$
Institute of Informatics
University of Białystok
Poland

Abstract

Summary. In this paper we define some properties about finite sequences and verify the partial correctness of an algorithm computing n-th element of Lucas sequence [23], [20] with given P and Q coefficients as well as two first elements (x and y). The algorithm is encoded in nominative data language 22 in the Mizar system [3, [1].

$$
\begin{aligned}
& \mathrm{i}:=0 \\
& \mathrm{~s}:=\mathrm{x} \\
& \mathrm{~b}:=\mathrm{y} \\
& \mathrm{c}:=\mathrm{x} \\
& \text { while (i <> n) } \\
& \mathrm{c}:=\mathrm{s} \\
& \mathrm{~s}:=\mathrm{b} \\
& \mathrm{ps}:=\mathrm{p} * \mathrm{~s} \\
& \mathrm{qc}:=\mathrm{q} * \mathrm{c} \\
& \mathrm{~b}:=\mathrm{ps}-\mathrm{qc} \\
& \mathrm{i}:=\mathrm{i}+\mathrm{j} \\
& \text { return } \mathrm{s}
\end{aligned}
$$

This paper continues verification of algorithms [10, [14, [12], [15], [13] written in terms of simple-named complex-valued nominative data [6, 8, [19, [11, [16, [17. The validity of the algorithm is presented in terms of semantic FloydHoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4 with partial pre- and post-conditions [18, 21, [7, [5].

MSC: 68Q60 03B70 68V20
Keywords: nominative data; program verification; Lucas sequences
MML identifier: NOMIN_9, version: 8.1 .10 5.64.1388

1. Introduction about Finite Sequences

Let n be a natural number and f be an n-element finite sequence. One can verify that $f \upharpoonright \operatorname{Seg} n$ reduces to f.

Let A, B be sets and $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}$ be partial functions from A to B. One can check that $\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\rangle$ is $(A \dot{\rightarrow} B)$-valued.

Let V, A be sets and $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}$ be binominative functions over simple-named complex-valued nominative date of V and A.

Observe that $\left\langle f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}\right\rangle$ is $\left(\operatorname{FPrg}\left(\mathrm{ND}_{\mathrm{SC}}(V, A)\right)\right)$-valued.
Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ be objects. One can verify that $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\rangle(1)$ reduces to a_{1} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\rangle(2)$ reduces to a_{2}.

And $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\rangle(3)$ reduces to a_{3} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\rangle(4)$ reduces to a_{4} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\rangle(5)$ reduces to a_{5} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\rangle(6)$ reduces to a_{6}.

Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$ be objects. The functor $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right.$, $\left.a_{7}, a_{8}, a_{9}\right\rangle$ yielding a finite sequence is defined by the term
(Def. 1) $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right\rangle^{\wedge}\left\langle a_{9}\right\rangle$.
Now we state the proposition:
(1) Let us consider objects $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$, and a finite sequence f. Then $f=\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle$ if and only if len $f=$ 9 and $f(1)=a_{1}$ and $f(2)=a_{2}$ and $f(3)=a_{3}$ and $f(4)=a_{4}$ and $f(5)=a_{5}$ and $f(6)=a_{6}$ and $f(7)=a_{7}$ and $f(8)=a_{8}$ and $f(9)=a_{9}$.
Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$ be objects. Let us observe that $\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right.$, $\left.a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle$ is 9-element.

Let us observe that $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle(1)$ reduces to a_{1} and $\left\langle a_{1}, a_{2}\right.$, $\left.a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle(2)$ reduces to a_{2} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle(3)$ reduces to a_{3} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle(4)$ reduces to a_{4}.

And $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle(5)$ reduces to a_{5} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right.$, $\left.a_{7}, a_{8}, a_{9}\right\rangle(6)$ reduces to a_{6} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle(7)$ reduces to a_{7} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle(8)$ reduces to a_{8} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right.$, $\left.a_{8}, a_{9}\right\rangle(9)$ reduces to a_{9}.

Now we state the proposition:
(2) Let us consider objects $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$. Then rng $\left\langle a_{1}, a_{2}, a_{3}\right.$, $\left.a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\}$.
Let X be a non empty set and $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$ be elements of X. Note that the functor $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle$ yields a finite sequence of elements of X. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}$ be objects. The functor $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle$ yielding a finite sequence is defined by the term
(Def. 2) $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}\right\rangle \wedge\left\langle a_{10}\right\rangle$.
Now we state the proposition:
(3) Let us consider objects $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}$, and a finite sequence f. Then $f=\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle$ if and only if len $f=10$ and $f(1)=a_{1}$ and $f(2)=a_{2}$ and $f(3)=a_{3}$ and $f(4)=a_{4}$ and $f(5)=a_{5}$ and $f(6)=a_{6}$ and $f(7)=a_{7}$ and $f(8)=a_{8}$ and $f(9)=a_{9}$ and $f(10)=a_{10}$. The theorem is a consequence of (1).
Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}$ be objects. One can check that $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle$ is 10 -element.

Let us observe that $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle(1)$ reduces to a_{1} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle(2)$ reduces to a_{2} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}\right.$, $\left.a_{8}, a_{9}, a_{10}\right\rangle(3)$ reduces to a_{3} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle(4)$ reduces to a_{4} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle(5)$ reduces to a_{5}.

And $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle(6)$ reduces to a_{6} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right.$, $\left.a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle(7)$ reduces to a_{7} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle(8)$ reduces to a_{8} and $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle(9)$ reduces to a_{9} and $\left\langle a_{1}, a_{2}, a_{3}\right.$, $\left.a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle(10)$ reduces to a_{10}.

Now we state the proposition:
(4) Let us consider objects $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}$. Then $\operatorname{rng}\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\}$. The theorem is a consequence of (2).
Let X be a non empty set and $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}$ be elements of X. One can verify that the functor $\left\langle a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}\right\rangle$ yields a finite sequence of elements of X.

2. Lucas Sequences

Let i, j be integers. Let us observe that the functor $\langle i, j\rangle$ yields an element of $\mathbb{Z} \times \mathbb{Z}$. From now on x, y, P, Q denote integers, a, b, n denote natural numbers, V, A denote sets, val denotes a function, loc denotes a V-valued function, d_{1} denotes a non-atomic nominative data of V and A, p denotes a partial predicate over simple-named complex-valued nominative data of V and A, d denotes an object, z denotes an element of V.
T denotes a nominative data with simple names from V and complex values from A, s_{0} denotes a non zero natural number, $x_{0}, y_{0}, p_{0}, q_{0}$ denote integers, and n_{0} denotes a natural number.

Let us consider x, y, P, and Q. The functor $\operatorname{LucasSeq}(x, y, P, Q)$ yielding a sequence of $\mathbb{Z} \times \mathbb{Z}$ is defined by
(Def. 3) $\quad i t(0)=\langle x, y\rangle$ and for every natural number $n, i t(n+1)=\left\langle(i t(n))_{\mathbf{2}}\right.$, $\left.P \cdot\left((i t(n))_{\mathbf{2}}\right)-Q \cdot\left((i t(n))_{\mathbf{1}}\right)\right\rangle$.
Let us consider n. The functor $\operatorname{Lucas}(x, y, P, Q, n)$ yielding an element of \mathbb{Z} is defined by the term
$\left(\right.$ Def. 4) $\quad((\operatorname{LucasSeq}(x, y, P, Q))(n))_{1}$.
Now we state the propositions:
(5) (i) $\operatorname{Lucas}(x, y, P, Q, 0)=x$, and
(ii) $\operatorname{Lucas}(x, y, P, Q, 1)=y$, and
(iii) for every $n, \operatorname{Lucas}(x, y, P, Q, n+2)=P \cdot(\operatorname{Lucas}(x, y, P, Q, n+1))-$ $Q \cdot(\operatorname{Lucas}(x, y, P, Q, n))$.
(6) $\operatorname{LucasSeq}(0,1,1,-1)=\operatorname{Fib}$.

Proof: Set $L=\operatorname{LucasSeq}(0,1,1,-1)$. Set $F=$ Fib. Define \mathcal{P} [natural number $] \equiv L\left(\$_{1}\right)=F\left(\$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
(7) $\operatorname{Lucas}(0,1,1,-1, n)=\operatorname{Fib}(n)$.
(8) $\operatorname{LucasSeq}(a, b, 1,-1)=\operatorname{GenFib}(a, b)$.

Proof: Set $L=\operatorname{LucasSeq}(a, b, 1,-1)$. Set $F=\operatorname{GenFib}(a, b)$. Define \mathcal{P} [natural number] $\equiv L\left(\$_{1}\right)=F\left(\$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
(9) $\operatorname{Lucas}(a, b, 1,-1, n)=\operatorname{GFib}(a, b, n)$.
(10) $\operatorname{LucasSeq}(2,1,1,-1)=$ Lucas.

Proof: Set $L=\operatorname{LucasSeq}(2,1,1,-1)$. Set $F=$ Lucas. Define \mathcal{P} [natural number $] \equiv L(\$ 1)=F\left(\$ \$_{1}\right)$. For every natural number k such that $\mathcal{P}[k]$ holds $\mathcal{P}[k+1]$. For every natural number $k, \mathcal{P}[k]$.
(11) $\operatorname{Lucas}(2,1,1,-1, n)=\operatorname{Luc}(n)$.

3. Main Algorithm

Now we state the proposition:
(12) Suppose Seg $10 \subseteq$ dom $l o c$ and $l o c$ is valid w.r.t. d_{1}. Then $\left\{l o c_{/ 1}, l o c / 2\right.$, $\left.l o c_{/ 3}, l o c_{/ 4}, l o c_{/ 5}, l o c_{/ 6}, l o c_{/ 7}, l o c_{/ 8}, l o c_{/ 9}, l o c_{/ 10}\right\} \subseteq \operatorname{dom} d_{1}$.
Let us consider V, A, and $l o c$. The functor $\operatorname{LucasLoopBody~}(A, l o c)$ yielding a binominative function over simple-named complex-valued nominative data of V and A is defined by the term
(Def. 5) PP-composition $\left(\operatorname{Asg}^{\left(l o c_{/ 6}\right)}\left(\left(l o c_{/ 4}\right) \Rightarrow_{a}\right)\right.$, Asg $^{\left(l o c_{/ 4}\right)}\left(\left(l o c_{/ 5}\right) \Rightarrow_{a}\right), \operatorname{Asg}^{\left(l o c_{/ 9}\right)}$ (multiplication $\left.\left(A, l o c_{/ 7}, l o c_{/ 4}\right)\right), \operatorname{Asg}^{\left(l o c_{/ 10}\right)}\left(\right.$ multiplication $\left.\left(A, l o c_{/ 8}, l o c_{/ 6}\right)\right)$, $\operatorname{Asg}^{(l o c / 5)}\left(\operatorname{subtraction}\left(A,\left(l o c_{/ 9}\right),\left(l o c_{/ 10}\right)\right)\right), \operatorname{Asg}^{(l o c / 1)}\left(\operatorname{addition}\left(A, l o c_{/ 1}\right.\right.$, $\left.l o c_{/ 2}\right)$).

The functor LucasMainLoop $(A, l o c)$ yielding a binominative function over simple-named complex-valued nominative data of V and A is defined by the term
(Def. 6) $\quad \mathrm{WH}\left(\neg \operatorname{Equality}\left(A, l o c_{/ 1}, l o c_{/ 3}\right)\right.$, LucasLoopBody $\left.(A, l o c)\right)$.
Let us consider val. The functor LucasMainPart ($A, l o c, v a l$) yielding a binominative function over simple-named complex-valued nominative data of V and A is defined by the term
(Def. 7) initial-assignments $(A, l o c, v a l, 10) \bullet(\operatorname{LucasMainLoop}(A, l o c))$.
Let us consider z. The functor $\operatorname{LucasProg}(A, l o c, v a l, z)$ yielding a binominative function over simple-named complex-valued nominative data of V and A is defined by the term
(Def. 8) LucasMainPart $(A, l o c, v a l) \bullet\left(\operatorname{Asg}^{z}\left((l o c / 4) \Rightarrow_{a}\right)\right)$.
Let us consider $x_{0}, y_{0}, p_{0}, q_{0}$, and n_{0}. The functor $\operatorname{LucasInp}\left(x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$ yielding a finite sequence is defined by the term
(Def. 9) $\left\langle 0,1, n_{0}, x_{0}, y_{0}, x_{0}, p_{0}, q_{0}, 0,0\right\rangle$.
Observe that $\operatorname{LucasInp}\left(x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$ is 10 -element.
Let us consider V, A, and d. Let val be a finite sequence. We say that x_{0}, $y_{0}, p_{0}, q_{0}, n_{0}$ and d constitute a valid Lucas input w.r.t. V, A and val if and only if
(Def. 10) LucasInp $\left(x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$ is a valid input of $V, A, v a l$ and d.
The functor validLucasInp $\left(V, A, v a l, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$ yielding a partial predicate over simple-named complex-valued nominative data of V and A is defined by the term
(Def. 11) $\operatorname{ValInp}\left(V, A, v a l, \operatorname{LucasInp}\left(x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right)$.
One can check that validLucasInp $\left(V, A, v a l, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$ is total.
Let us consider z and d. We say that $x_{0}, y_{0}, p_{0}, q_{0}, n_{0}$ and d constitute a valid Lucas output w.r.t. A and z if and only if
(Def. 12) $\left\langle\operatorname{Lucas}\left(x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right\rangle$ is a valid output of $V, A,\langle z\rangle$ and d.
The functor validLucasOut $\left(A, z, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$ yielding a partial predicate over simple-named complex-valued nominative data of V and A is defined by the term
(Def. 13) $\operatorname{ValOut}\left(V, A, z, \operatorname{Lucas}\left(x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right)$.
Let us consider loc and d. We say that $x_{0}, y_{0}, p_{0}, q_{0}, n_{0}$ and d constitute a Lucas inverse w.r.t. A and loc if and only if
(Def. 14) there exists a non-atomic nominative data d_{1} of V and A such that $d=d_{1}$ and $\left\{l o c_{/ 1}, l o c_{/ 2}, l o c_{/ 3}, l o c_{/ 4}, l o c_{/ 5}, l o c_{/ 6}, l o c_{/ 7}, l o c_{/ 8}, l o c_{/ 9}, l o c c_{/ 10}\right\} \subseteq$ $\operatorname{dom} d_{1}$ and $d_{1}(l o c / 2)=1$ and $d_{1}\left(l o c_{/ 3}\right)=n_{0}$ and $d_{1}\left(l o c_{/ 7}\right)=p_{0}$ and
$d_{1}\left(l o c_{/ 8}\right)=q_{0}$ and there exists a natural number I such that $I=d_{1}\left(l o c_{/ 1}\right)$ and $d_{1}(l o c / 4)=\operatorname{Lucas}\left(x_{0}, y_{0}, p_{0}, q_{0}, I\right)$ and $d_{1}\left(l o c_{/ 5}\right)=$ $\operatorname{Lucas}\left(x_{0}, y_{0}, p_{0}, q_{0}, I+1\right)$.
The functor $\operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$ yielding a partial predicate over simple-named complex-valued nominative data of V and A is defined by
(Def. 15) dom it $=\mathrm{ND}_{\mathrm{SC}}(V, A)$ and for every object d such that $d \in \operatorname{dom}$ it holds if $x_{0}, y_{0}, p_{0}, q_{0}, n_{0}$ and d constitute a Lucas inverse w.r.t. A and $l o c$, then it $(d)=$ true and if $x_{0}, y_{0}, p_{0}, q_{0}, n_{0}$ and d do not constitute a Lucas inverse w.r.t. A and $l o c$, then $i t(d)=$ false.
Let us observe that $\operatorname{Lucas} \operatorname{Inv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$ is total. Let us consider a 10 -element finite sequence val. Now we state the propositions:
(13) Suppose V is not empty and V is without nonatomic nominative data w.r.t. A and $\operatorname{Seg} 10 \subseteq \operatorname{dom} l o c$ and $l o c \upharpoonright \operatorname{Seg} 10$ is one-to-one and $l o c$ and val are different w.r.t. 10 .

Then validLucasInp $\left(V, A, v a l, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right) \models(\operatorname{ScPsuperposSeq}(l o c$, $\left.v a l, \operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right)(\operatorname{len} \operatorname{ScPsuperposSeq}(l o c, v a l$, Lucas$\left.\left.\operatorname{Inv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right)\right)$.
Proof: Set $s_{0}=10$. Set $n=l o c / 3$. Set $i_{0}=\operatorname{LucasInp}\left(x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$. Consider d_{1} being a non-atomic nominative data of V and A such that $d=d_{1}$ and val is valid w.r.t. d_{1} and for every natural number n such that $1 \leqslant n \leqslant \operatorname{len} i_{0}$ holds $d_{1}(v a l(n))=i_{0}(n)$.

Set $F=\operatorname{LocalOverlapSeq}\left(A, l o c, v a l, d_{1}, s_{0}\right)$. Reconsider $L_{6}=F(10)$ as a non-atomic nominative data of V and A. $x_{0}, y_{0}, p_{0}, q_{0}, n_{0}$ and L_{6} constitute a Lucas inverse w.r.t. A and $l o c$.
(14) Suppose V is not empty and V is without nonatomic nominative data w.r.t. A and $\operatorname{Seg} 10 \subseteq \operatorname{dom} l o c$ and $l o c \upharpoonright \operatorname{Seg} 10$ is one-to-one and $l o c$ and $v a l$ are different w.r.t. 10 . Then $\left\langle\right.$ validLucasInp $\left(V, A, v a l, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)$, initial-assignments $\left.(A, l o c, v a l, 10), \operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right\rangle$ is an SFHT of $\mathrm{ND}_{\mathrm{SC}}(V, A)$. The theorem is a consequence of (13).
(15) Suppose V is not empty and A is complex containing and V is without nonatomic nominative data w.r.t. A and $d_{1} \in \operatorname{dom}(\operatorname{LucasLoopBody}(A, l o c))$ and $l o c$ is valid w.r.t. d_{1} and $\operatorname{Seg} 10 \subseteq$ dom loc and for every T, T is a value on $l o c_{/ 1}$ and T is a value on $l o c_{/ 2}$ and T is a value on $l o c_{/ 4}$ and T is a value on $l o c_{/ 6}$ and T is a value on $l o c_{/ 7}$ and T is a value on $l o c_{/ 8}$ and T is a value on $l o c_{/ 9}$ and T is a value on $l o c_{/ 10}$.

Then $\left\langle\left(l o c_{/ 4}\right) \Rightarrow_{a},\left(l o c_{/ 5}\right) \Rightarrow_{a}\right.$, multiplication $\left(A, l o c_{/ 7}, l o c_{/ 4}\right)$, multiplica$\operatorname{tion}\left(A, l o c_{/ 8}, l o c_{/ 6}\right), \quad \operatorname{subtraction}\left(A,\left(l o c_{/ 9}\right),\left(l o c_{/ 10}\right)\right), \quad \operatorname{addition}\left(A, l o c_{/ 1}\right.$, $\left.\left.l o c_{/ 2}\right)\right\rangle$ is domain closed w.r.t. loc, d_{1} and $\langle 6,4,9,10,5,1\rangle$. The theorem is a consequence of (12).

Let us consider a non empty set V and a V-valued, 10-element finite sequence loc. Now we state the propositions:
(16) Suppose A is complex containing and V is without nonatomic nominative data w.r.t. A and for every nominative data T with simple names from V and complex values from A, T is a value on $l o c_{/ 1}$ and T is a value on $l o c / 2$ and T is a value on $l o c / 4$ and T is a value on $l o c_{/ 6}$ and T is a value on $l o c_{/ 7}$ and T is a value on $l o c_{/ 8}$ and T is a value on $l o c_{/ 9}$ and T is a value on $l o c / 10$ and $l o c$ is one-to-one. Then $\left\langle\operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right.$, $\left.\operatorname{LucasLoopBody}(A, l o c), \operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right\rangle$ is an SFHT of $\mathrm{ND}_{\mathrm{SC}}(V, A)$. The theorem is a consequence of (15) and (5).
(17) Suppose A is complex containing and V is without nonatomic nominative data w.r.t. A and for every nominative data T with simple names from V and complex values from A, T is a value on $l o c_{/ 1}$ and T is a value on $l o c_{/ 2}$ and T is a value on $l o c_{/ 4}$ and T is a value on $l o c_{/ 6}$ and T is a value on $l o c_{/ 7}$ and T is a value on $l o c_{/ 8}$ and T is a value on $l o c_{/ 9}$ and T is a value on $l o c / 10$ and $l o c$ is one-to-one.

Then $\left\langle\operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right.$, LucasMainLoop $(A, l o c)$, Equa$\left.\operatorname{lity}(A, l o c / 1, l o c / 3) \wedge \operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right\rangle$ is an SFHT of ND ${ }_{\mathrm{SC}}$ (V, A). The theorem is a consequence of (16).
(18) Let us consider a non empty set V, a V-valued, 10 -element finite sequence $l o c$, and a 10 -element finite sequence val. Suppose A is complex containing and V is without nonatomic nominative data w.r.t. A and for every nominative data T with simple names from V and complex values from A, T is a value on $l o c_{/ 1}$ and T is a value on $l o c_{/ 2}$ and T is a value on $l o c_{/ 4}$ and T is a value on $l o c_{/ 6}$ and T is a value on $l o c_{/ 7}$ and T is a value on $l o c_{/ 8}$ and T is a value on $l o c_{/ 9}$ and T is a value on $l o c_{/ 10}$ and $l o c$ is one-to-one and loc and val are different w.r.t. 10.

Then $\left\langle v a l i d L u c a s I n p\left(~ V, A, v a l, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right.$, LucasMainPart $(A, l o c$, val $)$, Equality $\left.\left(A, l o c_{/ 1}, l o c_{/ 3}\right) \wedge \operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right\rangle$ is an SFHT of $\mathrm{ND}_{\mathrm{SC}}(V, A)$. The theorem is a consequence of (14) and (17).
(19) Suppose V is not empty and V is without nonatomic nominative data w.r.t. A and for every T, T is a value on $l o c_{/ 1}$ and T is a value on $l o c_{/ 3}$. Then Equality $\left(A, l o c_{/ 1}, l o c_{/ 3}\right) \wedge \operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right) \models$ $\mathrm{S}_{\mathrm{P}}\left(\operatorname{validLucasOut}\left(A, z, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right),\left(l o c_{/ 4}\right) \Rightarrow_{a}, z\right)$.
Proof: Set $i=l o c_{/ 1}$. Set $j=l o c_{/ 2}$. Set $n=l o c_{/ 3}$. Set $s=l o c_{/ 4}$. Set $b=l o c_{/ 5}$. Set $c=l o c_{/ 6}$. Set $p=l o c_{/ 7}$. Set $q=l o c_{/ 8}$. Set $p_{1}=l o c_{/ 9}$. Set $q_{1}=l o c / 10$. Set $D_{12}=s \Rightarrow_{a}$. Set $E_{1}=\left\{i, j, n, s, b, c, p, q, p_{1}, q_{1}\right\}$.

Consider d_{1} being a non-atomic nominative data of V and A such that $d=d_{1}$ and $E_{1} \subseteq \operatorname{dom} d_{1}$ and $d_{1}(j)=1$ and $d_{1}(n)=n_{0}$ and $d_{1}(p)=p_{0}$
and $d_{1}(q)=q_{0}$ and there exists a natural number I such that $I=d_{1}(i)$ and $d_{1}(s)=\operatorname{Lucas}\left(x_{0}, y_{0}, p_{0}, q_{0}, I\right)$ and $d_{1}(b)=\operatorname{Lucas}\left(x_{0}, y_{0}, p_{0}, q_{0}, I+1\right)$.

Reconsider $d_{2}=d$ as a nominative data with simple names from V and complex values from A. Set $L=d_{2} \nabla_{a}^{z} D_{12}\left(d_{2}\right) . x_{0}, y_{0}, p_{0}, q_{0}, n_{0}$ and L constitute a valid Lucas output w.r.t. A and z.
(20) Suppose V is not empty and V is without nonatomic nominative data w.r.t. A and for every T, T is a value on $l o c_{/ 1}$ and T is a value on $l o c_{/ 3}$. Then $\left\langle\operatorname{Equality}\left(A, l o c_{/ 1}, l o c_{/ 3}\right) \wedge \operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right.$, $\operatorname{Asg}^{z}\left((l o c / 4) \Rightarrow_{a}\right)$, validLucasOut $\left.\left(A, z, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right\rangle$ is an SFHT of N$\mathrm{D}_{\mathrm{SC}}(V, A)$. The theorem is a consequence of (19).
(21) Suppose for every T, T is a value on $l o c_{/ 1}$ and T is a value on $l o c_{/ 3}$. Then $\left\langle\sim\left(\operatorname{Equality}(A, l o c / 1, l o c / 3) \wedge \operatorname{LucasInv}\left(A, l o c, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right)\right.$, $\operatorname{Asg}^{z}\left((l o c / 4) \Rightarrow_{a}\right)$, validLucasOut $\left.\left(A, z, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right\rangle$ is an SFHT of N$\mathrm{D}_{\mathrm{SC}}(V, A)$.

(22) Partial correctness of a Lucas algorithm:

Let us consider a non empty set V, a V-valued, 10 -element finite sequence $l o c$, a 10 -element finite sequence $v a l$, and an element z of V. Suppose A is complex containing and V is without nonatomic nominative data w.r.t. A and for every nominative data T with simple names from V and complex values from A, T is a value on $l o c_{/ 1}$ and T is a value on $l o c_{/ 2}$ and T is a value on $l o c_{/ 3}$ and T is a value on $l o c_{/ 4}$ and T is a value on $l o c_{/ 6}$ and T is a value on $l o c_{/ 7}$ and T is a value on $l o c_{/ 8}$ and T is a value on $l o c_{/ 9}$ and T is a value on $l o c / 10$ and $l o c$ is one-to-one and $l o c$ and val are different w.r.t. 10.

Then 〈validLucasInp $\left(V, A, v a l, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right), \operatorname{LucasProg}(A, l o c, v a l$, $z)$, validLucasOut $\left.\left(A, z, x_{0}, y_{0}, p_{0}, q_{0}, n_{0}\right)\right\rangle$ is an SFHT of $\operatorname{ND}_{\mathrm{SC}}(V, A)$. The theorem is a consequence of (18), (20), and (21).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pakk. The role of the Mizar Mathematical Library for interactive proof development in Mizar Journal of Automated Reasoning, 61(1):9-32, 2018. doi $10.1007 /$ siv817-017-9440-6
[2] R.W. Floyd. Assigning meanings to programs. Mathematical Aspects of Computer Science, 19(19-32), 1967.
[3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi 10.1007/s10817-015-9345-1
[4] C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10): 576-580, 1969.
[5] Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic with partial pre- and post-conditions. In Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization
and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14-17, 2018, volume 2104 of CEUR Workshop Proceedings, pages 716-724, 2018.
[6] Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur Korniłowicz. Simplenamed complex-valued nominative data - definition and basic operations. Formalized Mathematics, 25(3):205-216, 2017. doi 10.1515/forma-2017-0020
[7] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Implementation of the composition-nominative approach to program formalization in Mizar. The Computer Science Journal of Moldova, 26(1):59-76, 2018.
[8] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On an algorithmic algebra over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149158, 2018. doi 10.2478/forma-2018-0012
[9] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. An inference system of an extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2): 159-164, 2018. doi 10.2478/forma-2018-0013
[10] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Partial correctness of GCD algorithm. Formalized Mathematics, 26(2):165-173, 2018. doi 10.2478/forma-2018-0014.
[11] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On algebras of algorithms and specifications over uninterpreted data. Formalized Mathematics, 26(2):141-147, 2018. doi $10.2478 /$ forma-2018-0011.
[12] Adrian Jaszczak. Partial correctness of a power algorithm. Formalized Mathematics, 27 (2):189-195, 2019. doi 10.2478/forma-2019-0018
[13] Adrian Jaszczak. General theory and tools for proving algorithms in nominative data systems. Formalized Mathematics, 28(4):269-278, 2020. doi 10.2478/forma-2020-0024
[14] Adrian Jaszczak and Artur Korniłowicz. Partial correctness of a factorial algorithm. Formalized Mathematics, 27(2):181-187, 2019. doi 10.2478/forma-2019-0017.
[15] Artur Korniłowicz. Partial correctness of a Fibonacci algorithm. Formalized Mathematics, 28(2):187-196, 2020. doi 10.2478/forma-2020-0016.
[16] Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the algebra of nominative data in Mizar In Maria Ganzha, Leszek A. Macıaszek, and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September 3-6, 2017., pages 237-244, 2017. ISBN 978-83-946253-7-5. doi 10.15439/2017F301.
[17] Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formalization of the nominative algorithmic algebra in Mizar, In Leszek Borzemskı, Jerzy Świątek, and Zofia Wilimowska, editors, Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology - ISAT 2017 - Part II, Szklarska Poręba, Poland, September 17-19, 2017, volume 656 of Advances in Intelligent Systems and Computing, pages 176-186. Springer, 2017. ISBN 978-3-319-67228-1. doi 10.1007/978-3-319-67229-8_16
[18] Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An approach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nıck Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchenko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spivakovsky, editors, Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Kyiv, Ukraine, May 15-18, 2017, volume 1844 of CEUR Workshop Proceedings, pages 504-523. CEUR-WS.org, 2017.
[19] Artur Korniłowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial predicates. Formalized Mathematics, 26(1):11-20, 2018. doi 10.2478/forma-2018-0002.
[20] Thomas Koshy. Fibonacci and Lucas Numbers with Applications, Volume 1. John Wiley \& Sons, Inc., 2017. ISBN 978-1118742129. doi 10.1002/9781118742327
[21] Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare logic for partial pre- and postconditions In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications: 9th International Conference, ICTERI 2013, Kherson, Ukraine, June 19-22, 2013, Revised Selected Papers, pages 355-378. Springer International Publishing, 2013. ISBN 978-3-319-03998-5. doi 10.1007/978-3-319-03998-5_18.
[22] Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties of nominative data and functions In Vadim Ermolayev, Heinrich C. Mayr, Mykola Nıkitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and Communication Technologies in Education, Research, and Industrial Applications - 10th International Conference, ICTERI 2014, Kherson, Ukraine, June 9-12, 2014, Revised Selected Papers, volume 469 of Communications in Computer and Information Science, pages 117-138. Springer, 2014. ISBN 978-3-319-13205-1. doi 10.1007/978-3-319-13206-8_6.
[23] Steven Vajda. Fibonacci $\&$ Lucas Numbers, and the Golden Section: Theory and Applications. Dover Publications, 2007. ISBN 978-0486462769.

Accepted October 25, 2020

