
FORMALIZED MATHEMATICS

Vol. 28, No. 4, Pages 279–288, 2020
DOI: 10.2478/forma-2020-0025 https://www.sciendo.com/

Partial Correctness of an Algorithm
Computing Lucas Sequences

Adrian Jaszczak
Institute of Informatics
University of Białystok

Poland

Summary. In this paper we define some properties about finite sequences
and verify the partial correctness of an algorithm computing n-th element of
Lucas sequence [23], [20] with given P and Q coefficients as well as two first
elements (x and y). The algorithm is encoded in nominative data language [22]
in the Mizar system [3], [1].

i := 0
s := x
b := y
c := x
while (i <> n)
c := s
s := b
ps := p*s
qc := q*c
b := ps - qc
i := i + j

return s

This paper continues verification of algorithms [10], [14], [12], [15], [13] writ-
ten in terms of simple-named complex-valued nominative data [6], [8], [19], [11],
[16], [17]. The validity of the algorithm is presented in terms of semantic Floyd-
Hoare triples over such data [9]. Proofs of the correctness are based on an in-
ference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and
post-conditions [18], [21], [7], [5].

MSC: 68Q60 03B70 68V20

Keywords: nominative data; program verification; Lucas sequences

MML identifier: NOMIN 9, version: 8.1.10 5.64.1388

c© 2020 University of Białystok
CC-BY-SA License ver. 3.0 or later
ISSN 1426–2630(Print), 1898-9934(Online)279

https://content.sciendo.com/view/journals/forma/forma-overview.xml
https://orcid.org/0000-0003-4899-4983
http://zbmath.org/classification/?q=cc:68Q60
http://zbmath.org/classification/?q=cc:03B70
http://zbmath.org/classification/?q=cc:68V20
http://fm.mizar.org/miz/nomin_9.miz
http://ftp.mizar.org/
http://creativecommons.org/licenses/by-sa/3.0/

280 adrian jaszczak

1. Introduction about Finite Sequences

Let n be a natural number and f be an n-element finite sequence. One can
verify that f� Seg n reduces to f .

Let A, B be sets and f1, f2, f3, f4, f5, f6 be partial functions from A to B.
One can check that 〈〈f1, f2, f3, f4, f5, f6〉〉 is (A→̇B)-valued.

Let V , A be sets and f1, f2, f3, f4, f5, f6 be binominative functions over
simple-named complex-valued nominative date of V and A.

Observe that 〈〈f1, f2, f3, f4, f5, f6〉〉 is (FPrg(NDSC(V,A)))-valued.
Let a1, a2, a3, a4, a5, a6 be objects. One can verify that 〈〈a1, a2, a3, a4, a5, a6〉〉(1)

reduces to a1 and 〈〈a1, a2, a3, a4, a5, a6〉〉(2) reduces to a2.
And 〈〈a1, a2, a3, a4, a5, a6〉〉(3) reduces to a3 and 〈〈a1, a2, a3, a4, a5, a6〉〉(4) redu-

ces to a4 and 〈〈a1, a2, a3, a4, a5, a6〉〉(5) reduces to a5 and 〈〈a1, a2, a3, a4, a5, a6〉〉(6)
reduces to a6.

Let a1, a2, a3, a4, a5, a6, a7, a8, a9 be objects. The functor 〈〈a1, a2, a3, a4, a5, a6,
a7, a8, a9〉〉 yielding a finite sequence is defined by the term

(Def. 1) 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 a 〈a9〉.
Now we state the proposition:

(1) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9, and a finite
sequence f . Then f = 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉 if and only if len f =
9 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and f(5) = a5
and f(6) = a6 and f(7) = a7 and f(8) = a8 and f(9) = a9.

Let a1, a2, a3, a4, a5, a6, a7, a8, a9 be objects. Let us observe that 〈〈a1, a2, a3, a4,
a5, a6, a7, a8, a9〉〉 is 9-element.

Let us observe that 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(1) reduces to a1 and 〈〈a1, a2,
a3, a4, a5, a6, a7, a8, a9〉〉(2) reduces to a2 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(3)
reduces to a3 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(4) reduces to a4.

And 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(5) reduces to a5 and 〈〈a1, a2, a3, a4, a5, a6,
a7, a8, a9〉〉(6) reduces to a6 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(7) reduces to a7
and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉(8) reduces to a8 and 〈〈a1, a2, a3, a4, a5, a6, a7,
a8, a9〉〉(9) reduces to a9.

Now we state the proposition:

(2) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9. Then rng 〈〈a1, a2, a3,
a4, a5, a6, a7, a8, a9〉〉 = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

Let X be a non empty set and a1, a2, a3, a4, a5, a6, a7, a8, a9 be elements of
X. Note that the functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉 yields a finite sequence
of elements of X. Let a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be objects. The
functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 yielding a finite sequence is defined
by the term

Partial correctness of an algorithm computing Lucas ... 281

(Def. 2) 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9〉〉 a 〈a10〉.
Now we state the proposition:

(3) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, and a finite
sequence f . Then f = 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 if and only if
len f = 10 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and
f(5) = a5 and f(6) = a6 and f(7) = a7 and f(8) = a8 and f(9) = a9 and
f(10) = a10. The theorem is a consequence of (1).

Let a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be objects. One can check that
〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 is 10-element.

Let us observe that 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(1) reduces to a1 and
〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(2) reduces to a2 and 〈〈a1, a2, a3, a4, a5, a6, a7,
a8, a9, a10〉〉(3) reduces to a3 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(4) reduces
to a4 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(5) reduces to a5.

And 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(6) reduces to a6 and 〈〈a1, a2, a3, a4, a5,
a6, a7, a8, a9, a10〉〉(7) reduces to a7 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(8) re-
duces to a8 and 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉(9) reduces to a9 and 〈〈a1, a2, a3,
a4, a5, a6, a7, a8, a9, a10〉〉(10) reduces to a10.

Now we state the proposition:

(4) Let us consider objects a1, a2, a3, a4, a5, a6, a7, a8, a9, a10. Then
rng 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}.
The theorem is a consequence of (2).

LetX be a non empty set and a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be elements
of X. One can verify that the functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8, a9, a10〉〉 yields
a finite sequence of elements of X.

2. Lucas Sequences

Let i, j be integers. Let us observe that the functor 〈〈i, j〉〉 yields an element of
Z×Z. From now on x, y, P ,Q denote integers, a, b, n denote natural numbers, V ,
A denote sets, val denotes a function, loc denotes a V-valued function, d1 denotes
a non-atomic nominative data of V and A, p denotes a partial predicate over
simple-named complex-valued nominative data of V and A, d denotes an object,
z denotes an element of V .
T denotes a nominative data with simple names from V and complex values

from A, s0 denotes a non zero natural number, x0, y0, p0, q0 denote integers,
and n0 denotes a natural number.

Let us consider x, y, P , and Q. The functor LucasSeq(x, y, P,Q) yielding
a sequence of Z× Z is defined by

282 adrian jaszczak

(Def. 3) it(0) = 〈〈x, y〉〉 and for every natural number n, it(n + 1) = 〈〈(it(n))2,
P · ((it(n))2)−Q · ((it(n))1)〉〉.

Let us consider n. The functor Lucas(x, y, P,Q, n) yielding an element of Z
is defined by the term

(Def. 4) ((LucasSeq(x, y, P,Q))(n))1.

Now we state the propositions:

(5) (i) Lucas(x, y, P,Q, 0) = x, and

(ii) Lucas(x, y, P,Q, 1) = y, and

(iii) for every n, Lucas(x, y, P,Q, n+ 2) = P · (Lucas(x, y, P,Q, n+ 1))−
Q · (Lucas(x, y, P,Q, n)).

(6) LucasSeq(0, 1, 1,−1) = Fib.
Proof: Set L = LucasSeq(0, 1, 1,−1). Set F = Fib. Define P[natural
number] ≡ L($1) = F ($1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(7) Lucas(0, 1, 1,−1, n) = Fib(n).

(8) LucasSeq(a, b, 1,−1) = GenFib(a, b).
Proof: Set L = LucasSeq(a, b, 1,−1). Set F = GenFib(a, b). Define
P[natural number] ≡ L($1) = F ($1). For every natural number k such
that P[k] holds P[k + 1]. For every natural number k, P[k]. �

(9) Lucas(a, b, 1,−1, n) = GFib(a, b, n).

(10) LucasSeq(2, 1, 1,−1) = Lucas.
Proof: Set L = LucasSeq(2, 1, 1,−1). Set F = Lucas. Define P[natural
number] ≡ L($1) = F ($1). For every natural number k such that P[k]
holds P[k + 1]. For every natural number k, P[k]. �

(11) Lucas(2, 1, 1,−1, n) = Luc(n).

3. Main Algorithm

Now we state the proposition:

(12) Suppose Seg 10 ⊆ dom loc and loc is valid w.r.t. d1. Then {loc/1, loc/2,
loc/3, loc/4, loc/5, loc/6, loc/7, loc/8, loc/9, loc/10} ⊆ dom d1.

Let us consider V , A, and loc. The functor LucasLoopBody(A, loc) yielding
a binominative function over simple-named complex-valued nominative data of
V and A is defined by the term

(Def. 5) PP-composition(Asg(loc/6)((loc/4)⇒a),Asg(loc/4)((loc/5)⇒a),Asg(loc/9)

(multiplication(A, loc/7, loc/4)),Asg(loc/10)(multiplication(A, loc/8, loc/6)),
Asg(loc/5)(subtraction(A, (loc/9), (loc/10))),Asg(loc/1)(addition(A, loc/1,
loc/2))).

Partial correctness of an algorithm computing Lucas ... 283

The functor LucasMainLoop(A, loc) yielding a binominative function over
simple-named complex-valued nominative data of V and A is defined by the
term

(Def. 6) WH(¬Equality(A, loc/1, loc/3),LucasLoopBody(A, loc)).

Let us consider val. The functor LucasMainPart(A, loc, val) yielding a bino-
minative function over simple-named complex-valued nominative data of V and
A is defined by the term

(Def. 7) initial-assignments(A, loc, val, 10) • (LucasMainLoop(A, loc)).

Let us consider z. The functor LucasProg(A, loc, val, z) yielding a binomi-
native function over simple-named complex-valued nominative data of V and A
is defined by the term

(Def. 8) LucasMainPart(A, loc, val) • (Asgz((loc/4)⇒a)).
Let us consider x0, y0, p0, q0, and n0. The functor LucasInp(x0, y0, p0, q0, n0)

yielding a finite sequence is defined by the term

(Def. 9) 〈〈0, 1, n0, x0, y0, x0, p0, q0, 0, 0〉〉.
Observe that LucasInp(x0, y0, p0, q0, n0) is 10-element.
Let us consider V , A, and d. Let val be a finite sequence. We say that x0,

y0, p0, q0, n0 and d constitute a valid Lucas input w.r.t. V , A and val if and
only if

(Def. 10) LucasInp(x0, y0, p0, q0, n0) is a valid input of V , A, val and d.

The functor validLucasInp(V,A, val, x0, y0, p0, q0, n0) yielding a partial pre-
dicate over simple-named complex-valued nominative data of V and A is defined
by the term

(Def. 11) ValInp(V,A, val,LucasInp(x0, y0, p0, q0, n0)).

One can check that validLucasInp(V,A, val, x0, y0, p0, q0, n0) is total.
Let us consider z and d. We say that x0, y0, p0, q0, n0 and d constitute a

valid Lucas output w.r.t. A and z if and only if

(Def. 12) 〈Lucas(x0, y0, p0, q0, n0)〉 is a valid output of V , A, 〈z〉 and d.

The functor validLucasOut(A, z, x0, y0, p0, q0, n0) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by
the term

(Def. 13) ValOut(V,A, z,Lucas(x0, y0, p0, q0, n0)).

Let us consider loc and d. We say that x0, y0, p0, q0, n0 and d constitute a
Lucas inverse w.r.t. A and loc if and only if

(Def. 14) there exists a non-atomic nominative data d1 of V and A such that
d = d1 and {loc/1, loc/2, loc/3, loc/4, loc/5, loc/6, loc/7, loc/8, loc/9, loc/10} ⊆
dom d1 and d1(loc/2) = 1 and d1(loc/3) = n0 and d1(loc/7) = p0 and

284 adrian jaszczak

d1(loc/8) = q0 and there exists a natural number I such that I = d1(loc/1)
and d1(loc/4) = Lucas(x0, y0, p0, q0, I) and d1(loc/5) =
Lucas(x0, y0, p0, q0, I + 1).

The functor LucasInv(A, loc, x0, y0, p0, q0, n0) yielding a partial predicate
over simple-named complex-valued nominative data of V and A is defined by

(Def. 15) dom it = NDSC(V,A) and for every object d such that d ∈ dom it holds
if x0, y0, p0, q0, n0 and d constitute a Lucas inverse w.r.t. A and loc, then
it(d) = true and if x0, y0, p0, q0, n0 and d do not constitute a Lucas
inverse w.r.t. A and loc, then it(d) = false.

Let us observe that LucasInv(A, loc, x0, y0, p0, q0, n0) is total. Let us consider
a 10-element finite sequence val. Now we state the propositions:

(13) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and Seg 10 ⊆ dom loc and loc� Seg 10 is one-to-one and loc and
val are different w.r.t. 10.

Then validLucasInp(V,A, val, x0, y0, p0, q0, n0) |= (ScPsuperposSeq(loc,
val,LucasInv(A, loc, x0, y0, p0, q0, n0)))(len ScPsuperposSeq(loc, val,Lucas-
Inv(A, loc, x0, y0, p0, q0, n0))).
Proof: Set s0 = 10. Set n = loc/3. Set i0 = LucasInp(x0, y0, p0, q0, n0).
Consider d1 being a non-atomic nominative data of V and A such that
d = d1 and val is valid w.r.t. d1 and for every natural number n such that
1 ¬ n ¬ len i0 holds d1(val(n)) = i0(n).

Set F = LocalOverlapSeq(A, loc, val, d1, s0). Reconsider L6 = F (10)
as a non-atomic nominative data of V and A. x0, y0, p0, q0, n0 and L6
constitute a Lucas inverse w.r.t. A and loc. �

(14) Suppose V is not empty and V is without nonatomic nominative data
w.r.t. A and Seg 10 ⊆ dom loc and loc� Seg 10 is one-to-one and loc and
val are different w.r.t. 10. Then 〈validLucasInp(V,A, val, x0, y0, p0, q0, n0),
initial-assignments(A, loc, val, 10),LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an
SFHT of NDSC(V,A). The theorem is a consequence of (13).

(15) Suppose V is not empty and A is complex containing and V is without
nonatomic nominative data w.r.t.A and d1 ∈ dom(LucasLoopBody(A, loc))
and loc is valid w.r.t. d1 and Seg 10 ⊆ dom loc and for every T , T is a value
on loc/1 and T is a value on loc/2 and T is a value on loc/4 and T is a value
on loc/6 and T is a value on loc/7 and T is a value on loc/8 and T is a value
on loc/9 and T is a value on loc/10.

Then 〈〈(loc/4)⇒a, (loc/5)⇒a,multiplication(A, loc/7, loc/4),multiplica-
tion(A, loc/8, loc/6), subtraction(A, (loc/9), (loc/10)), addition(A, loc/1,
loc/2)〉〉 is domain closed w.r.t. loc, d1 and 〈〈6, 4, 9, 10, 5, 1〉〉. The theorem is
a consequence of (12).

Partial correctness of an algorithm computing Lucas ... 285

Let us consider a non empty set V and a V-valued, 10-element finite sequence
loc. Now we state the propositions:

(16) Suppose A is complex containing and V is without nonatomic nominative
data w.r.t. A and for every nominative data T with simple names from V
and complex values from A, T is a value on loc/1 and T is a value on loc/2
and T is a value on loc/4 and T is a value on loc/6 and T is a value on
loc/7 and T is a value on loc/8 and T is a value on loc/9 and T is a value
on loc/10 and loc is one-to-one. Then 〈LucasInv(A, loc, x0, y0, p0, q0, n0),
LucasLoopBody(A, loc),LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an SFHT of
NDSC(V,A). The theorem is a consequence of (15) and (5).

(17) Suppose A is complex containing and V is without nonatomic nominative
data w.r.t. A and for every nominative data T with simple names from V
and complex values from A, T is a value on loc/1 and T is a value on loc/2
and T is a value on loc/4 and T is a value on loc/6 and T is a value on
loc/7 and T is a value on loc/8 and T is a value on loc/9 and T is a value
on loc/10 and loc is one-to-one.

Then 〈LucasInv(A, loc, x0, y0, p0, q0, n0),LucasMainLoop(A, loc),Equa-
lity(A, loc/1, loc/3)∧LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an SFHT of NDSC
(V,A). The theorem is a consequence of (16).

(18) Let us consider a non empty set V , a V-valued, 10-element finite se-
quence loc, and a 10-element finite sequence val. Suppose A is complex
containing and V is without nonatomic nominative data w.r.t. A and for
every nominative data T with simple names from V and complex values
from A, T is a value on loc/1 and T is a value on loc/2 and T is a value on
loc/4 and T is a value on loc/6 and T is a value on loc/7 and T is a value
on loc/8 and T is a value on loc/9 and T is a value on loc/10 and loc is
one-to-one and loc and val are different w.r.t. 10.

Then 〈validLucasInp(V,A, val, x0, y0, p0, q0, n0),LucasMainPart(A, loc,
val),Equality(A, loc/1, loc/3)∧LucasInv(A, loc, x0, y0, p0, q0, n0)〉 is an SFHT
of NDSC(V,A). The theorem is a consequence of (14) and (17).

(19) Suppose V is not empty and V is without nonatomic nominative da-
ta w.r.t. A and for every T , T is a value on loc/1 and T is a value on
loc/3. Then Equality(A, loc/1, loc/3) ∧ LucasInv(A, loc, x0, y0, p0, q0, n0) |=
SP(validLucasOut(A, z, x0, y0, p0, q0, n0), (loc/4)⇒a, z).
Proof: Set i = loc/1. Set j = loc/2. Set n = loc/3. Set s = loc/4. Set
b = loc/5. Set c = loc/6. Set p = loc/7. Set q = loc/8. Set p1 = loc/9. Set
q1 = loc/10. Set D12 = s⇒a. Set E1 = {i, j, n, s, b, c, p, q, p1, q1}.

Consider d1 being a non-atomic nominative data of V and A such that
d = d1 and E1 ⊆ dom d1 and d1(j) = 1 and d1(n) = n0 and d1(p) = p0

286 adrian jaszczak

and d1(q) = q0 and there exists a natural number I such that I = d1(i)
and d1(s) = Lucas(x0, y0, p0, q0, I) and d1(b) = Lucas(x0, y0, p0, q0, I + 1).

Reconsider d2 = d as a nominative data with simple names from V
and complex values from A. Set L = d2∇zaD12(d2). x0, y0, p0, q0, n0 and
L constitute a valid Lucas output w.r.t. A and z. �

(20) Suppose V is not empty and V is without nonatomic nominative da-
ta w.r.t. A and for every T , T is a value on loc/1 and T is a value on
loc/3. Then 〈Equality(A, loc/1, loc/3) ∧ LucasInv(A, loc, x0, y0, p0, q0, n0),
Asgz((loc/4)⇒a), validLucasOut(A, z, x0, y0, p0, q0, n0)〉 is an SFHT of N-
DSC(V,A). The theorem is a consequence of (19).

(21) Suppose for every T , T is a value on loc/1 and T is a value on loc/3.
Then 〈∼ (Equality(A, loc/1, loc/3) ∧ LucasInv(A, loc, x0, y0, p0, q0, n0)),
Asgz((loc/4)⇒a), validLucasOut(A, z, x0, y0, p0, q0, n0)〉 is an SFHT of N-
DSC(V,A).

(22) Partial correctness of a Lucas algorithm:
Let us consider a non empty set V , a V-valued, 10-element finite sequence
loc, a 10-element finite sequence val, and an element z of V . Suppose A is
complex containing and V is without nonatomic nominative data w.r.t. A
and for every nominative data T with simple names from V and complex
values from A, T is a value on loc/1 and T is a value on loc/2 and T is
a value on loc/3 and T is a value on loc/4 and T is a value on loc/6 and T
is a value on loc/7 and T is a value on loc/8 and T is a value on loc/9 and
T is a value on loc/10 and loc is one-to-one and loc and val are different
w.r.t. 10.

Then 〈validLucasInp(V,A, val, x0, y0, p0, q0, n0),LucasProg(A, loc, val,
z), validLucasOut(A, z, x0, y0, p0, q0, n0)〉 is an SFHT of NDSC(V,A). The
theorem is a consequence of (18), (20), and (21).

References

[1] Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Ma-
tuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library
for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32,
2018. doi:10.1007/s10817-017-9440-6.

[2] R.W. Floyd. Assigning meanings to programs.Mathematical Aspects of Computer Science,
19(19–32), 1967.

[3] Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar.
Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.

[4] C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):
576–580, 1969.

[5] Ievgen Ivanov and Mykola Nikitchenko. On the sequence rule for the Floyd-Hoare logic
with partial pre- and post-conditions. In Proceedings of the 14th International Conference
on ICT in Education, Research and Industrial Applications. Integration, Harmonization

https://doi.org/10.1007/s10817-017-9440-6
https://doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-017-9440-6
http://dx.doi.org/10.1007/s10817-015-9345-1

Partial correctness of an algorithm computing Lucas ... 287

and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14–17, 2018, volume
2104 of CEUR Workshop Proceedings, pages 716–724, 2018.

[6] Ievgen Ivanov, Mykola Nikitchenko, Andrii Kryvolap, and Artur Korniłowicz. Simple-
named complex-valued nominative data – definition and basic operations. Formalized
Mathematics, 25(3):205–216, 2017. doi:10.1515/forma-2017-0020.

[7] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Implementation of the
composition-nominative approach to program formalization in Mizar. The Computer
Science Journal of Moldova, 26(1):59–76, 2018.

[8] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On an algorithmic algebra
over simple-named complex-valued nominative data. Formalized Mathematics, 26(2):149–
158, 2018. doi:10.2478/forma-2018-0012.

[9] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. An inference system of an
extension of Floyd-Hoare logic for partial predicates. Formalized Mathematics, 26(2):
159–164, 2018. doi:10.2478/forma-2018-0013.

[10] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. Partial correctness of GCD
algorithm. Formalized Mathematics, 26(2):165–173, 2018. doi:10.2478/forma-2018-0014.

[11] Ievgen Ivanov, Artur Korniłowicz, and Mykola Nikitchenko. On algebras of algorithms
and specifications over uninterpreted data. Formalized Mathematics, 26(2):141–147, 2018.
doi:10.2478/forma-2018-0011.

[12] Adrian Jaszczak. Partial correctness of a power algorithm. Formalized Mathematics, 27
(2):189–195, 2019. doi:10.2478/forma-2019-0018.

[13] Adrian Jaszczak. General theory and tools for proving algorithms in nominative data
systems. Formalized Mathematics, 28(4):269–278, 2020. doi:10.2478/forma-2020-0024.

[14] Adrian Jaszczak and Artur Korniłowicz. Partial correctness of a factorial algorithm.
Formalized Mathematics, 27(2):181–187, 2019. doi:10.2478/forma-2019-0017.

[15] Artur Korniłowicz. Partial correctness of a Fibonacci algorithm. Formalized Mathematics,
28(2):187–196, 2020. doi:10.2478/forma-2020-0016.

[16] Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Formaliza-
tion of the algebra of nominative data in Mizar. In Maria Ganzha, Leszek A. Maciaszek,
and Marcin Paprzycki, editors, Proceedings of the 2017 Federated Conference on Compu-
ter Science and Information Systems, FedCSIS 2017, Prague, Czech Republic, September
3–6, 2017., pages 237–244, 2017. ISBN 978-83-946253-7-5. doi:10.15439/2017F301.

[17] Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. Forma-
lization of the nominative algorithmic algebra in Mizar. In Leszek Borzemski, Jerzy
Świątek, and Zofia Wilimowska, editors, Information Systems Architecture and Techno-
logy: Proceedings of 38th International Conference on Information Systems Architecture
and Technology – ISAT 2017 – Part II, Szklarska Poręba, Poland, September 17–19, 2017,
volume 656 of Advances in Intelligent Systems and Computing, pages 176–186. Springer,
2017. ISBN 978-3-319-67228-1. doi:10.1007/978-3-319-67229-8 16.

[18] Artur Korniłowicz, Andrii Kryvolap, Mykola Nikitchenko, and Ievgen Ivanov. An ap-
proach to formalization of an extension of Floyd-Hoare logic. In Vadim Ermolayev, Nick
Bassiliades, Hans-Georg Fill, Vitaliy Yakovyna, Heinrich C. Mayr, Vyacheslav Kharchen-
ko, Vladimir Peschanenko, Mariya Shyshkina, Mykola Nikitchenko, and Aleksander Spi-
vakovsky, editors, Proceedings of the 13th International Conference on ICT in Education,
Research and Industrial Applications. Integration, Harmonization and Knowledge Trans-
fer, Kyiv, Ukraine, May 15–18, 2017, volume 1844 of CEUR Workshop Proceedings, pages
504–523. CEUR-WS.org, 2017.

[19] Artur Korniłowicz, Ievgen Ivanov, and Mykola Nikitchenko. Kleene algebra of partial
predicates. Formalized Mathematics, 26(1):11–20, 2018. doi:10.2478/forma-2018-0002.

[20] Thomas Koshy. Fibonacci and Lucas Numbers with Applications, Volume 1. John Wiley
& Sons, Inc., 2017. ISBN 978-1118742129. doi:10.1002/9781118742327.

[21] Andrii Kryvolap, Mykola Nikitchenko, and Wolfgang Schreiner. Extending Floyd-Hoare
logic for partial pre- and postconditions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola
Nikitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information
and Communication Technologies in Education, Research, and Industrial Applications: 9th
International Conference, ICTERI 2013, Kherson, Ukraine, June 19–22, 2013, Revised
Selected Papers, pages 355–378. Springer International Publishing, 2013. ISBN 978-3-319-
03998-5. doi:10.1007/978-3-319-03998-5 18.

http://dx.doi.org/10.1515/forma-2017-0020
http://www.math.md/publications/csjm/issues/v26-n1/12569/
http://www.math.md/publications/csjm/issues/v26-n1/12569/
http://dx.doi.org/10.2478/forma-2018-0012
http://dx.doi.org/10.2478/forma-2018-0013
http://dx.doi.org/10.2478/forma-2018-0014
http://dx.doi.org/10.2478/forma-2018-0011
http://dx.doi.org/10.2478/forma-2019-0018
http://dx.doi.org/10.2478/forma-2020-0024
http://dx.doi.org/10.2478/forma-2019-0017
http://dx.doi.org/10.2478/forma-2020-0016
https://doi.org/10.15439/2017F301
https://doi.org/10.15439/2017F301
http://dx.doi.org/10.15439/2017F301
https://doi.org/10.1007/978-3-319-67229-8_16
https://doi.org/10.1007/978-3-319-67229-8_16
http://dx.doi.org/10.1007/978-3-319-67229-8_16
http://ceur-ws.org/Vol-1844/10000504.pdf
http://ceur-ws.org/Vol-1844/10000504.pdf
http://dx.doi.org/10.2478/forma-2018-0002
http://dx.doi.org/10.1002/9781118742327
https://doi.org/10.1007/978-3-319-03998-5_18
https://doi.org/10.1007/978-3-319-03998-5_18
http://dx.doi.org/10.1007/978-3-319-03998-5_18

288 adrian jaszczak

[22] Volodymyr G. Skobelev, Mykola Nikitchenko, and Ievgen Ivanov. On algebraic properties
of nominative data and functions. In Vadim Ermolayev, Heinrich C. Mayr, Mykola Ni-
kitchenko, Aleksander Spivakovsky, and Grygoriy Zholtkevych, editors, Information and
Communication Technologies in Education, Research, and Industrial Applications – 10th
International Conference, ICTERI 2014, Kherson, Ukraine, June 9–12, 2014, Revised
Selected Papers, volume 469 of Communications in Computer and Information Science,
pages 117–138. Springer, 2014. ISBN 978-3-319-13205-1. doi:10.1007/978-3-319-13206-8 6.

[23] Steven Vajda. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Appli-
cations. Dover Publications, 2007. ISBN 978-0486462769.

Accepted October 25, 2020

https://doi.org/10.1007/978-3-319-13206-8_6
https://doi.org/10.1007/978-3-319-13206-8_6
http://dx.doi.org/10.1007/978-3-319-13206-8_6

	=0pt Partial Correctness of an Algorithm Computing Lucas Sequences By Adrian Jaszczak

