Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/10837
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Pąk, Karol | - |
dc.date.accessioned | 2021-05-04T09:18:13Z | - |
dc.date.available | 2021-05-04T09:18:13Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Formalized Mathematics, Volume 28, Issue 2, Pages 211-215 | pl |
dc.identifier.issn | 1426-2630 | - |
dc.identifier.uri | http://hdl.handle.net/11320/10837 | - |
dc.description.abstract | The foundation of the Mizar Mathematical Library [2], is first-order Tarski-Grothendieck set theory. However, the foundation explicitly refers only to Tarski’s Axiom A, which states that for every set X there is a Tarski universe U such that X ∈ U. In this article, we prove, using the Mizar [3] formalism, that the Grothendieck name is justified. We show the relationship between Tarski and Grothendieck universe. | pl |
dc.description.sponsorship | This work has been supported by the Polish National Science Centre granted by decision no. DEC-2015/19/D/ST6/01473. | pl |
dc.language.iso | en | pl |
dc.publisher | DeGruyter Open | pl |
dc.rights | Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | - |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/3.0/ | - |
dc.subject | Tarski-Grothendieck set theory | pl |
dc.subject | Tarski’s Axiom A | pl |
dc.subject | Grothendieck universe | pl |
dc.title | Grothendieck Universes | pl |
dc.type | Article | pl |
dc.rights.holder | © 2020 University of Białymstoku; | - |
dc.rights.holder | CC-BY-SA License ver. 3.0 or later; | - |
dc.identifier.doi | 10.2478/forma-2020-0018 | - |
dc.description.Affiliation | Institute of Informatics, University of Białystok, Poland | pl |
dc.description.references | Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990. | pl |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17. | pl |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6. | pl |
dc.description.references | Chad E. Brown and Karol Pąk. A tale of two set theories. In Cezary Kaliszyk, Edwin Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics – 12th International Conference, CICM 2019, CIIRC, Prague, Czech Republic, July 8-12, 2019, Proceedings, volume 11617 of Lecture Notes in Computer Science, pages 44–60. Springer, 2019. doi:10.1007/978-3-030-23250-4_4. | pl |
dc.description.references | N. H. Williams. On Grothendieck universes. Compositio Mathematica, 21(1):1–3, 1969. | pl |
dc.identifier.eissn | 1898-9934 | - |
dc.description.volume | 28 | pl |
dc.description.issue | 2 | pl |
dc.description.firstpage | 211 | pl |
dc.description.lastpage | 215 | pl |
dc.identifier.citation2 | Formalized Mathematics | pl |
dc.identifier.orcid | 0000-0002-7099-1669 | - |
Występuje w kolekcji(ach): | Artykuły naukowe (WInf) Formalized Mathematics, 2020, Volume 28, Issue 2 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
10.2478_forma-2020-0018.pdf | 257,25 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL