REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/10837
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorPąk, Karol-
dc.date.accessioned2021-05-04T09:18:13Z-
dc.date.available2021-05-04T09:18:13Z-
dc.date.issued2020-
dc.identifier.citationFormalized Mathematics, Volume 28, Issue 2, Pages 211-215pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/10837-
dc.description.abstractThe foundation of the Mizar Mathematical Library [2], is first-order Tarski-Grothendieck set theory. However, the foundation explicitly refers only to Tarski’s Axiom A, which states that for every set X there is a Tarski universe U such that X ∈ U. In this article, we prove, using the Mizar [3] formalism, that the Grothendieck name is justified. We show the relationship between Tarski and Grothendieck universe.pl
dc.description.sponsorshipThis work has been supported by the Polish National Science Centre granted by decision no. DEC-2015/19/D/ST6/01473.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)-
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/-
dc.subjectTarski-Grothendieck set theorypl
dc.subjectTarski’s Axiom Apl
dc.subjectGrothendieck universepl
dc.titleGrothendieck Universespl
dc.typeArticlepl
dc.rights.holder© 2020 University of Białymstoku;-
dc.rights.holderCC-BY-SA License ver. 3.0 or later;-
dc.identifier.doi10.2478/forma-2020-0018-
dc.description.AffiliationInstitute of Informatics, University of Białystok, Polandpl
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesChad E. Brown and Karol Pąk. A tale of two set theories. In Cezary Kaliszyk, Edwin Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics – 12th International Conference, CICM 2019, CIIRC, Prague, Czech Republic, July 8-12, 2019, Proceedings, volume 11617 of Lecture Notes in Computer Science, pages 44–60. Springer, 2019. doi:10.1007/978-3-030-23250-4_4.pl
dc.description.referencesN. H. Williams. On Grothendieck universes. Compositio Mathematica, 21(1):1–3, 1969.pl
dc.identifier.eissn1898-9934-
dc.description.volume28pl
dc.description.issue2pl
dc.description.firstpage211pl
dc.description.lastpage215pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-7099-1669-
Występuje w kolekcji(ach):Artykuły naukowe (WInf)
Formalized Mathematics, 2020, Volume 28, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
10.2478_forma-2020-0018.pdf257,25 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons