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Summary. The foundation of the Mizar Mathematical Library [2], is first-
order Tarski-Grothendieck set theory. However, the foundation explicitly refers
only to Tarski’s Axiom A, which states that for every set X there is a Tarski
universe U such that X ∈ U . In this article, we prove, using the Mizar [3] forma-
lism, that the Grothendieck name is justified. We show the relationship between
Tarski and Grothendieck universe.

First we prove in Theorem (17) that every Grothendieck universe satisfies
Tarski’s Axiom A. Then in Theorem (18) we prove that every Grothendieck uni-
verse that contains a given set X, even the least (with respect to inclusion) deno-
ted by GrothendieckUniverseX, has as a subset the least (with respect to inclu-
sion) Tarski universe that containsX, denoted by the Tarski-ClassX. Since Tar-
ski universes, as opposed to Grothendieck universes [5], might not be transitive
(called epsilon-transitive in the Mizar Mathematical Library [1]) we focused
our attention to demonstrate that Tarski-Class X GrothendieckUniverseX
for some X.

Then we show in Theorem (19) that Tarski-ClassX whereX is the singleton
of any infinite set is a proper subset of GrothendieckUniverseX. Finally we show
that Tarski-Class X = GrothendieckUniverseX holds under the assumption
that X is a transitive set.

The formalisation is an extension of the formalisation used in [4].
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1. Grothendieck Universes Axioms

From now on X, Y, Z denote sets, x, y, z denote objects, and A, B, C denote
ordinal numbers.

Let us consider X. We say that X is power-closed if and only if

(Def. 1) if Y ∈ X, then 2Y ∈ X.

We say that X is union-closed if and only if

(Def. 2) if Y ∈ X, then
⋃
Y ∈ X.

We say that X is Family-Union-closed if and only if

(Def. 3) for every Y and for every function f such that dom f = Y and rng f ⊆ X
and Y ∈ X holds

⋃
rng f ∈ X.

Note that every set which is Tarski is also power-closed and subset-closed
and every set which is transitive and Tarski is also union-closed and Family-
Union-closed and every set which is transitive and Family-Union-closed is also
union-closed and every set which is transitive and power-closed is also subset-
closed.

A Grothendieck is a transitive, power-closed, Family-Union-closed set.

2. Grothendieck Universe Operator

Let X be a set. A Grothendieck of X is a Grothendieck defined by

(Def. 4) X ∈ it .
Let G1, G2 be Grothendiecks. One can verify that G1 ∩ G2 is transitive,

power-closed, and Family-Union-closed.
Now we state the proposition:

(1) Let us consider Grothendiecks G1, G2 of X. Then G1∩G2 is a Grothen-
dieck of X.

Let X be a set. The functor GrothendieckUniverse(X) yielding a Grothen-
dieck of X is defined by

(Def. 5) for every Grothendieck G of X, it ⊆ G.

The scheme ClosedUnderReplacement deals with a set X and a Grothendieck
U of X and a unary functor F yielding a set and states that

(Sch. 1) {F(x), where x is an element of X : x ∈ X} ∈ U
provided

• if Y ∈ X , then F(Y ) ∈ U .

In the sequel U denotes a Grothendieck. Now we state the proposition:
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(2) Let us consider a function f . If dom f ∈ U and rng f ⊆ U , then rng f ∈
U .
Proof: Set A = dom f . Define S(set) = {f($1)}. Consider s being a func-
tion such that dom s = A and for every X such that X ∈ A holds
s(X) = S(X). rng s ⊆ U .

⋃
s ⊆ rng f . rng f ⊆

⋃
s. �

3. Set of all Sets up to Given Rank

Let x be an object. The functor Rrank(x) yielding a transitive set is defined
by the term

(Def. 6) Rrk(x).

Now we state the propositions:

(3) X ∈ RA if and only if there exists B such that B ∈ A and X ∈ 2RB .
Proof: If X ∈ RA, then there exists B such that B ∈ A and X ∈ 2RB .
�

(4) Y ∈ Rrank(X) if and only if there exists Z such that Z ∈ X and
Y ∈ 2Rrank(Z).
Proof: If Y ∈ Rrank(X), then there exists Z such that Z ∈ X and
Y ∈ 2Rrank(Z). �

(5) If x ∈ X and y ∈ Rrank(x), then y ∈ Rrank(X).

(6) If Y ∈ Rrank(X), then there exists x such that x ∈ X and Y ⊆
Rrank(x). The theorem is a consequence of (4).

(7) X ⊆ Rrank(X).

(8) If X ⊆ Rrank(Y ), then Rrank(X) ⊆ Rrank(Y ).

(9) If X ∈ Rrank(Y ), then Rrank(X) ∈ Rrank(Y ).

(10) (i) X ∈ Rrank(Y ), or

(ii) Rrank(Y ) ⊆ Rrank(X).

(11) (i) Rrank(X) ∈ Rrank(Y ), or

(ii) Rrank(Y ) ⊆ Rrank(X).

(12) If X ∈ U and X ≈ A, then A ∈ U .
Proof: Define P[ordinal number] ≡ for every X such that X ≈ $1 and
X ∈ U holds $1 ∈ U . For every ordinal number A such that for every
ordinal number C such that C ∈ A holds P[C] holds P[A]. For every
ordinal number O, P[O]. �

(13) If X ∈ Y ∈ U , then X ∈ U .

(14) If X ∈ U , then Rrank(X) ∈ U .
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Proof: Define P[ordinal number] ≡ for every set A such that rk(A) ∈ $1
and A ∈ U holds Rrank(A) ∈ U . For every A such that for every C such
that C ∈ A holds P[C] holds P[A]. For every ordinal number O, P[O]. �

(15) If A ∈ U , then RA ∈ U .
Proof: Define P[ordinal number] ≡ if $1 ∈ U , then R$1 ∈ U . For every A
such that for every C such that C ∈ A holds P[C] holds P[A]. For every
ordinal number O, P[O]. �

4. Tarski vs. Grothendieck Universe

Now we state the propositions:

(16) If X ⊆ U and X /∈ U , then there exists a function f such that f is
one-to-one and dom f = OnU and rng f = X.
Proof: For every set x such that x ∈ OnU holds x is an ordinal number
and x ⊆ OnU . Reconsider Λ = OnU as an ordinal number. There exists
a function THE such that for every set x such that ∅ 6= x ⊆ X holds
THE(x) ∈ x. Consider THE being a function such that for every set x
such that ∅ 6= x ⊆ X holds THE(x) ∈ x. Define R(set) = {rk(x), where
x is an element of $1 : x ∈ $1}. For every set A and for every object x,
x ∈ R(A) iff there exists a set a such that a ∈ A and x = rk(a).

DefineQ[set, object] ≡ $2 ∈ X\$1 and for every ordinal number B such
that B ∈ R(X \ $1) holds rk($2) ⊆ B. Define F(transfinite sequence) =
THE({x, where x is an element of X : Q[rng $1, x]}). Consider f being
a transfinite sequence such that dom f = Λ and for every ordinal number
A and for every transfinite sequence L such that A ∈ Λ and L = f�A
holds f(A) = F(L). For every ordinal number A such that A ∈ Λ holds
Q[rng(f�A), f(A)]. f is one-to-one. rng f ⊆ X. X ⊆ rng f . �

(17) Every Grothendieck is Tarski.
Proof: If X /∈ U , then X ≈ U . �

Let us note that every set which is transitive, power-closed, and Family-
Union-closed is also universal and every set which is universal is also transitive,
power-closed, and Family-Union-closed.

Now we state the propositions:

(18) Let us consider a Grothendieck G of X. Then T(X) ⊆ G.

(19) Let us consider an infinite set X. Then X /∈ T({X}).
Proof: Define B(set, set) = $2 ∪ 2$2 . Consider f being a function such
that dom f = N and f(0) = {{A}, ∅} and for every natural number n,
f(n+1) = B(n, f(n)). Set U =

⋃
f . DefineM[object, object] ≡ $1 ∈ f($2)

and $2 ∈ dom f and for every natural numbers i, j such that i < j = $2
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holds $1 /∈ f(i). For every object x such that x ∈ U there exists an object
y such that M[x, y].

Consider M being a function such that domM = U and for every
object x such that x ∈ U holdsM[x,M(x)]. U is subset-closed. For every
X such that X ∈ U holds 2X ∈ U . Define D[natural number] ≡ f($1)
is finite. For every natural number n such that D[n] holds D[n + 1]. For
every natural number n, D[n]. For every set x such that x ∈ dom f holds
f(x) is countable. For every X such that X ⊆ U holds X ≈ U or X ∈ U .
A /∈ U . �

(20) Let us consider an infinite set X. Then T({X}) ⊂ GrothendieckUniverse
({X}). The theorem is a consequence of (18) and (19).

(21) (i) GrothendieckUniverse(X) is a universal class, and

(ii) for every universal class U such that X ∈ U holds

GrothendieckUniverse(X) ⊆ U .

(22) Let us consider a transitive set X. Then T(X) =
GrothendieckUniverse(X). The theorem is a consequence of (18).
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