REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/9012
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorSchwarzweller, Christoph-
dc.date.accessioned2020-04-16T10:52:53Z-
dc.date.available2020-04-16T10:52:53Z-
dc.date.issued2019-
dc.identifier.citationFormalized Mathematics, Volume 27, Issue 3, Pages 223–228pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/9012-
dc.description.abstractThis is the third part of a four-article series containing a Mizar [3], [1], [2] formalization of Kronecker’s construction about roots of polynomials in field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there exists a field extension E of F such that p has a root over E. The formalization follows Kronecker’s classical proof using F [X]/<p> as the desired field extension E [6], [4], [5]. In the first part we show that an irreducible polynomial p ∈ F [X]\F has a root over F [X]/<p>. Note, however, that this statement cannot be true in a rigid formal sense: We do not have F ⊆ F [X]/ < p > as sets, so F is not a subfield of F [X]/<p>, and hence formally p is not even a polynomial over F [X]/ < p >. Consequently, we translate p along the canonical monomorphism ϕ: F → F [X]/<p> and show that the translated polynomial ϕ (p) has a root over F [X]/<p>. Because F is not a subfield of F [X]/<p> we construct in the second part the field (E \ ϕF)∪F for a given monomorphism ϕ: F → E and show that this field both is isomorphic to F and includes F as a subfield. In the literature this part of the proof usually consists of saying that “one can identify F with its image ϕF in F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to do so we need to assume that F ∩ E = ∅, in particular Kronecker’s construction can be formalized for fields F with F ∩ F [X] = ∅. Surprisingly, as we show in this third part, this condition is not automatically true for arbitrary fields F : With the exception of ℤ2 we construct for every field F an isomorphic copy F′ of F with F′ ∩ F′ [X] ≠ ∅. We also prove that for Mizar’s representations of ℤn, ℚ and ℝ we have ℤn ∩ ℤn[X] = ∅, ℚ ∩ ℚ[X] = ∅ and ℝ ∩ ℝ[X] = ∅, respectively. In the fourth part we finally define field extensions: E is a field extension of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets, and thus a polynomial p over F is also a polynomial over E. We then apply the construction of the second part to F [X]/<p> with the canonical monomorphism ϕ: F → F [X]/<p>. Together with the first part this gives – for fields F with F ∩ F [X] = ∅ – a field extension E of F in which p ∈ F [X]\F has a root.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsUznanie autorstwa-Na tych samych warunkach 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/pl/*
dc.subjectroots of polynomialspl
dc.subjectfield extensionspl
dc.subjectKronecker’s constructionpl
dc.titleOn the Intersection of Fields F with F[X]pl
dc.typeArticlepl
dc.identifier.doi10.2478/forma-2019-0021-
dc.description.AffiliationInstitute of Informatics, University of Gdansk, Polandpl
dc.description.referencesGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesAdam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363–371, 2016. doi:10.15439/2016F520.pl
dc.description.referencesNathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.pl
dc.description.referencesHeinz Lüneburg. Gruppen, Ringe, Körper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.pl
dc.description.referencesKnut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.pl
dc.identifier.eissn1898-9934-
dc.description.volume27-
dc.description.issue3-
dc.description.firstpage223pl
dc.description.lastpage228pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0001-9587-8737-
Występuje w kolekcji(ach):Formalized Mathematics, 2019, Volume 27, Issue 3

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma_2019_27_3_0021.pdf265,97 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons