REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/8130
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorNakasho, Kazuhisa-
dc.date.accessioned2019-07-29T08:28:47Z-
dc.date.available2019-07-29T08:28:47Z-
dc.date.issued2019-
dc.identifier.citationFormalized Mathematics, Volume 27, Issue 2, Pages 107 - 115-
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/8130-
dc.description.abstractIn this article, using the Mizar system [2], [1], we discuss invertible operators on Banach spaces. In the first chapter, we formalized the theorem that denotes any operators that are close enough to an invertible operator are also invertible by using the property of Neumann series.In the second chapter, we formalized the continuity of an isomorphism that maps an invertible operator on Banach spaces to its inverse. These results are used in the proof of the implicit function theorem. We referred to [3], [10], [6], [7] in this formalization.-
dc.language.isoen-
dc.publisherDeGruyter Open-
dc.subjectBanach space-
dc.subjectinvertible operator-
dc.subjectNeumann series-
dc.subjectisomorphism of linear operator spaces-
dc.subject47A05-
dc.subject47J07-
dc.subject68T99-
dc.subject03B35-
dc.titleInvertible Operators on Banach Spaces-
dc.typeArticle-
dc.identifier.doi10.2478/forma-2019-0012-
dc.description.AffiliationYamaguchi University, Yamaguchi, Japan-
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.-
dc.description.referencesAdam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.-
dc.description.referencesMiyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.-
dc.description.referencesKazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Implicit function theorem. Part I. Formalized Mathematics, 25(4):269–281, 2017. doi:10.1515/forma-2017-0026.-
dc.description.referencesHiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51–59, 2011. doi:10.2478/v10037-011-0009-2.-
dc.description.referencesLaurent Schwartz. Théorie des ensembles et topologie, tome 1. Analyse. Hermann, 1997.-
dc.description.referencesLaurent Schwartz. Calcul différentiel, tome 2. Analyse. Hermann, 1997.-
dc.description.referencesYasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2004.-
dc.description.referencesYasunari Shidama. The Banach algebra of bounded linear operators. Formalized Mathematics, 12(2):103–108, 2004.-
dc.description.referencesKosaku Yoshida. Functional Analysis. Springer, 1980.-
dc.identifier.eissn1898-9934-
dc.description.volume27-
dc.description.issue2-
dc.description.firstpage107-
dc.description.lastpage115-
dc.identifier.citation2Formalized Mathematics-
dc.identifier.orcid0000-0003-1110-4342-
Występuje w kolekcji(ach):Formalized Mathematics, 2019, Volume 27, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma_2019_27_2_003.pdf235,34 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons