Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/7632
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Nakasho, Kazuhisa | - |
dc.contributor.author | Futa, Yuichi | - |
dc.contributor.author | Shidama, Yasunari | - |
dc.date.accessioned | 2019-03-04T10:34:25Z | - |
dc.date.available | 2019-03-04T10:34:25Z | - |
dc.date.issued | 2018/10/01 | - |
dc.identifier.citation | Formalized Mathematics, Volume 26, Issue 3, Pages 231-237 | - |
dc.identifier.issn | 1426-2630 | - |
dc.identifier.uri | http://hdl.handle.net/11320/7632 | - |
dc.description.abstract | In this article, using the Mizar system [1], [2], we discuss the continuity of bounded linear operators on normed linear spaces. In the first section, it is discussed that bounded linear operators on normed linear spaces are uniformly continuous and Lipschitz continuous. Especially, a bounded linear operator on the dense subset of a complete normed linear space has a unique natural extension over the whole space. In the next section, several basic currying properties are formalized.In the last section, we formalized that continuity of bilinear operator is equivalent to both Lipschitz continuity and local continuity. We referred to [4], [13], and [3] in this formalization. | - |
dc.description.sponsorship | This study was supported in part by JSPS KAKENHI Grant Number JP17K00182. | - |
dc.language.iso | en | - |
dc.publisher | DeGruyter Open | - |
dc.subject | Lipschitz continuity | - |
dc.subject | uniform continuity | - |
dc.subject | bounded linear operators | - |
dc.subject | bilinear operators | - |
dc.title | Continuity of Bounded Linear Operators on Normed Linear Spaces | - |
dc.type | Article | - |
dc.identifier.doi | 10.2478/forma-2018-0021 | - |
dc.description.Affiliation | Kazuhisa Nakasho - Yamaguchi University, Yamaguchi, Japan | - |
dc.description.Affiliation | Yuichi Futa - Tokyo University of Technology, Tokyo, Japan | - |
dc.description.Affiliation | Yasunari Shidama - Shinshu University, Nagano, Japan | - |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17. | - |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6. | - |
dc.description.references | N. J. Dunford and T. Schwartz. Linear operators I. Interscience Publ., 1958. | - |
dc.description.references | Miyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972. | - |
dc.description.references | Kazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Topological properties of real normed space. Formalized Mathematics, 22(3):209–223, 2014. doi:10.2478/forma-2014-0024. | - |
dc.description.references | Kazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Implicit function theorem. Part I. Formalized Mathematics, 25(4):269–281, 2017. doi:10.1515/forma-2017-0026. | - |
dc.description.references | Keiko Narita, Noboru Endou, and Yasunari Shidama. Riemann integral of functions from ℝ into real Banach space. Formalized Mathematics, 21(2):145–152, 2013. doi:10.2478/forma-2013-0016. | - |
dc.description.references | Takaya Nishiyama, Artur Korniłowicz, and Yasunari Shidama. The uniform continuity of functions on normed linear spaces. Formalized Mathematics, 12(3):277–279, 2004. | - |
dc.description.references | Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269–275, 2004. | - |
dc.description.references | Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51–59, 2011. doi:10.2478/v10037-011-0009-2. | - |
dc.description.references | Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2004. | - |
dc.description.references | Yasunari Shidama. The series on Banach algebra. Formalized Mathematics, 12(2):131–138, 2004. | - |
dc.description.references | Kosaku Yoshida. Functional Analysis. Springer, 1980. | - |
dc.identifier.eissn | 1898-9934 | - |
dc.description.volume | 26 | - |
dc.description.issue | 3 | - |
dc.description.firstpage | 231 | - |
dc.description.lastpage | 237 | - |
dc.identifier.citation2 | Formalized Mathematics | - |
Występuje w kolekcji(ach): | Formalized Mathematics, 2018, Volume 26, Issue 3 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
forma_2018_26_3_004.pdf | 215,61 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL