REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/7632
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorNakasho, Kazuhisa-
dc.contributor.authorFuta, Yuichi-
dc.contributor.authorShidama, Yasunari-
dc.date.accessioned2019-03-04T10:34:25Z-
dc.date.available2019-03-04T10:34:25Z-
dc.date.issued2018/10/01-
dc.identifier.citationFormalized Mathematics, Volume 26, Issue 3, Pages 231-237-
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/7632-
dc.description.abstractIn this article, using the Mizar system [1], [2], we discuss the continuity of bounded linear operators on normed linear spaces. In the first section, it is discussed that bounded linear operators on normed linear spaces are uniformly continuous and Lipschitz continuous. Especially, a bounded linear operator on the dense subset of a complete normed linear space has a unique natural extension over the whole space. In the next section, several basic currying properties are formalized.In the last section, we formalized that continuity of bilinear operator is equivalent to both Lipschitz continuity and local continuity. We referred to [4], [13], and [3] in this formalization.-
dc.description.sponsorshipThis study was supported in part by JSPS KAKENHI Grant Number JP17K00182.-
dc.language.isoen-
dc.publisherDeGruyter Open-
dc.subjectLipschitz continuity-
dc.subjectuniform continuity-
dc.subjectbounded linear operators-
dc.subjectbilinear operators-
dc.titleContinuity of Bounded Linear Operators on Normed Linear Spaces-
dc.typeArticle-
dc.identifier.doi10.2478/forma-2018-0021-
dc.description.AffiliationKazuhisa Nakasho - Yamaguchi University, Yamaguchi, Japan-
dc.description.AffiliationYuichi Futa - Tokyo University of Technology, Tokyo, Japan-
dc.description.AffiliationYasunari Shidama - Shinshu University, Nagano, Japan-
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.-
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.-
dc.description.referencesN. J. Dunford and T. Schwartz. Linear operators I. Interscience Publ., 1958.-
dc.description.referencesMiyadera Isao. Functional Analysis. Riko-Gaku-Sya, 1972.-
dc.description.referencesKazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Topological properties of real normed space. Formalized Mathematics, 22(3):209–223, 2014. doi:10.2478/forma-2014-0024.-
dc.description.referencesKazuhisa Nakasho, Yuichi Futa, and Yasunari Shidama. Implicit function theorem. Part I. Formalized Mathematics, 25(4):269–281, 2017. doi:10.1515/forma-2017-0026.-
dc.description.referencesKeiko Narita, Noboru Endou, and Yasunari Shidama. Riemann integral of functions from ℝ into real Banach space. Formalized Mathematics, 21(2):145–152, 2013. doi:10.2478/forma-2013-0016.-
dc.description.referencesTakaya Nishiyama, Artur Korniłowicz, and Yasunari Shidama. The uniform continuity of functions on normed linear spaces. Formalized Mathematics, 12(3):277–279, 2004.-
dc.description.referencesTakaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269–275, 2004.-
dc.description.referencesHiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family of real linear spaces. Formalized Mathematics, 19(1):51–59, 2011. doi:10.2478/v10037-011-0009-2.-
dc.description.referencesYasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics, 12(1):39–48, 2004.-
dc.description.referencesYasunari Shidama. The series on Banach algebra. Formalized Mathematics, 12(2):131–138, 2004.-
dc.description.referencesKosaku Yoshida. Functional Analysis. Springer, 1980.-
dc.identifier.eissn1898-9934-
dc.description.volume26-
dc.description.issue3-
dc.description.firstpage231-
dc.description.lastpage237-
dc.identifier.citation2Formalized Mathematics-
Występuje w kolekcji(ach):Formalized Mathematics, 2018, Volume 26, Issue 3

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma_2018_26_3_004.pdf215,61 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons