Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/6553| Tytuł: | Introduction to Diophantine Approximation. Part II |
| Autorzy: | Watase, Yasushige |
| Słowa kluczowe: | Diophantine approximation rational approximation Dirichlet Hurwitz Minkowski |
| Data wydania: | 2017 |
| Data dodania: | 11-maj-2018 |
| Wydawca: | DeGruyter Open |
| Źródło: | Formalized Mathematics, Volume 25, Issue 4, Pages 283–288 |
| Abstrakt: | In the article we present in the Mizar system [1], [2] the formalized proofs for Hurwitz’ theorem [4, 1891] and Minkowski’s theorem [5]. Both theorems are well explained as a basic result of the theory of Diophantine approximations appeared in [3], [6]. A formal proof of Dirichlet’s theorem, namely an inequation |θ−y/x| ≤ 1/x2 has infinitely many integer solutions (x, y) where θ is an irrational number, was given in [8]. A finer approximation is given by Hurwitz’ theorem: |θ− y/x|≤ 1/√5x2. Minkowski’s theorem concerns an inequation of a product of non-homogeneous binary linear forms such that |a1x + b1y + c1| · |a2x + b2y + c2| ≤ ∆/4 where ∆ = |a1b2 − a2b1| ≠ 0, has at least one integer solution. |
| Afiliacja: | Suginami-ku Matsunoki 3-21-6 Tokyo, Japan |
| URI: | http://hdl.handle.net/11320/6553 |
| DOI: | 10.1515/forma-2017-0027 |
| ISSN: | 1426-2630 |
| e-ISSN: | 1898-9934 |
| Typ Dokumentu: | Article |
| Występuje w kolekcji(ach): | Formalized Mathematics, 2017, Volume 25, Issue 4 |
Pliki w tej pozycji:
| Plik | Opis | Rozmiar | Format | |
|---|---|---|---|---|
| forma-2017-0027.pdf | 296,02 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL
