REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/5568
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorKorniłowicz, Artur-
dc.contributor.authorNaumowicz, Adam-
dc.contributor.authorGrabowski, Adam-
dc.date.accessioned2017-06-05T08:32:50Z-
dc.date.available2017-06-05T08:32:50Z-
dc.date.issued2017-
dc.identifier.citationFormalized Mathematics, Volume 25, Issue 1, pp. 49-54pl
dc.identifier.issn1426-2630pl
dc.identifier.issn1898-9934pl
dc.identifier.urihttp://hdl.handle.net/11320/5568-
dc.description.abstractIn this Mizar article, we complete the formalization of one of the items from Abad and Abad’s challenge list of “Top 100 Theorems” about Liouville numbers and the existence of transcendental numbers. It is item #18 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/. Liouville numbers were introduced by Joseph Liouville in 1844 [15] as an example of an object which can be approximated “quite closely” by a sequence of rational numbers. A real number x is a Liouville number iff for every positive integer n, there exist integers p and q such that q > 1 and 0 < x − p q < 1 q n . It is easy to show that all Liouville numbers are irrational. The definition and basic notions are contained in [10], [1], and [12]. Liouvile constant, which is defined formally in [12], is the first explicit transcendental (not algebraic) number, another notable examples are e and π [5], [11], and [4]. Algebraic numbers were formalized with the help of the Mizar system [13] very recently, by Yasushige Watase in [23] and now we expand these techniques into the area of not only pure algebraic domains (as fields, rings and formal polynomials), but also for more settheoretic fields. Finally we show that all Liouville numbers are transcendental, based on Liouville’s theorem on Diophantine approximation.-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.subjectLiouville number-
dc.subjectDiophantine approximation-
dc.subjecttranscendental number-
dc.subjectLiouville constant-
dc.titleAll Liouville Numbers are Transcendental-
dc.typeArticle-
dc.identifier.doi10.1515/forma-2017-0004-
dc.description.AffiliationKorniłowicz Artur - Institute of Informatics, University of Białystok, Białystok, Poland-
dc.description.AffiliationNaumowicz Adam - Institute of Informatics, University of Białystok, Białystok, Poland-
dc.description.AffiliationGrabowski Adam - Institute of Informatics, University of Białystok, Białystok, Poland-
dc.description.referencesTom M. Apostol. Modular Functions and Dirichlet Series in Number Theory. Springer- Verlag, 2nd edition, 1997.-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.-
dc.description.referencesSophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and _ as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76-87. ACM, 2016.-
dc.description.referencesJesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71-84, 2011.-
dc.description.referencesCzesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.-
dc.description.referencesCzesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.-
dc.description.referencesCzesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesJ.H. Conway and R.K. Guy. The Book of Numbers. Springer-Verlag, 1996.-
dc.description.referencesManuel Eberl. Liouville numbers. Archive of Formal Proofs, December 2015. http://isa-afp.org/entries/Liouville_Numbers.shtml, Formal proof development.-
dc.description.referencesAdam Grabowski and Artur Korniłowicz. Introduction to Liouville numbers. Formalized Mathematics, 25(1):39-48, 2017.-
dc.description.referencesAdam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015.-
dc.description.referencesRafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.-
dc.description.referencesJoseph Liouville. Nouvelle démonstration d’un théorème sur les irrationnelles algébriques, inséré dans le Compte Rendu de la dernière séance. Compte Rendu Acad. Sci. Paris, Sér.A (18):910–911, 1844.-
dc.description.referencesAnna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265-269, 2001.-
dc.description.referencesRobert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001.-
dc.description.referencesRobert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001.-
dc.description.referencesRobert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001.-
dc.description.referencesMichał Muzalewski and Lesław W. Szczerba. Construction of finite sequences over ring and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):97-104, 1991.-
dc.description.referencesAndrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1 (3):495-500, 1990.-
dc.description.referencesWojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.-
dc.description.referencesYasushige Watase. Algebraic numbers. Formalized Mathematics, 24(4):291-299, 2016.-
dc.description.referencesKatarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.-
Występuje w kolekcji(ach):Artykuły naukowe (WInf)
Formalized Mathematics, 2017, Volume 25, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2017-0004.pdf264,56 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons