Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
Tytuł: On Subnomials
Autorzy: Ziobro, Rafał
Słowa kluczowe: binomial formula
geometrical progression
Data wydania: 2016
Data dodania: 2-cze-2017
Wydawca: De Gruyter Open
Źródło: Formalized Mathematics, Volume 24, Issue 4, pp. 261-274
Abstrakt: While discussing the sum of consecutive powers as a result of division of two binomials W.W. Sawyer [12] observes “It is a curious fact that most algebra textbooks give our ast result twice. It appears in two different chapters and usually there is no mention in either of these that it also occurs in the other. The first chapter, of course, is that on factors. The second is that on geometrical progressions. Geometrical progressions are involved in nearly all financial questions involving compound interest – mortgages, annuities, etc.” It’s worth noticing that the first issue involves a simple arithmetical division of 99...9 by 9. While the above notion seems not have changed over the last 50 years, it reflects only a special case of a broader class of problems involving two variables. It seems strange, that while binomial formula is discussed and studied widely [7], [8], little research is done on its counterpart with all coefficients equal to one, which we will call here the subnomial. The study focuses on its basic properties and applies it to some simple problems usually proven by induction [6].
Afiliacja: Department of Carbohydrate Technology, University of Agriculture, Krakow, Poland
DOI: 10.1515/forma-2016-0022
ISSN: 1426-2630
Typ Dokumentu: Article
Występuje w kolekcji(ach):Formalized Mathematics, 2016, Volume 24, Issue 4

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2016-0022.pdf282,6 kBAdobe PDFOtwórz
Pokaż pełny widok rekordu Zobacz statystyki

Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons