REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: `http://hdl.handle.net/11320/5491`
Pole DCWartośćJęzyk
dc.contributor.authorEndou, Noboru-
dc.date.accessioned2017-05-16T09:30:38Z-
dc.date.available2017-05-16T09:30:38Z-
dc.date.issued2016-
dc.identifier.citationFormalized Mathematics, Volume 24, Issue 1, pp. 69-80pl
dc.identifier.issn1426-2630pl
dc.identifier.issn1898-9934pl
dc.identifier.urihttp://hdl.handle.net/11320/5491-
dc.description.abstractIn this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.subjectproduct measure-
dc.subjectpre-measure-
dc.titleProduct Pre-Measure-
dc.typeArticle-
dc.identifier.doi10.1515/forma-2016-0006-
dc.description.AffiliationEndouGifu Noboru - Gifu National College of Technology Gifu, Japan-
dc.description.referencesGrzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207-230, 2008. doi:10.2478/v10037-008-0027-x.-
dc.description.referencesGrzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537-541, 1990.-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.-
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.-
dc.description.referencesHeinz Bauer. Measure and Integration Theory. Walter de Gruyter Inc.-
dc.description.referencesJózef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.-
dc.description.referencesJózef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.-
dc.description.referencesVladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.-
dc.description.referencesCzesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.-
dc.description.referencesCzesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.-
dc.description.referencesCzesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesNoboru Endou. Construction of measure from semialgebra of sets. Formalized Mathematics, 23(4):309-323, 2015. doi:10.1515/forma-2015-0025.-
dc.description.referencesNoboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Mathematics, 14(2):53-70, 2006. doi:10.2478/v10037-006-0008-x.-
dc.description.referencesNoboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.-
dc.description.referencesNoboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended real valued functions. Formalized Mathematics, 9(3):525-529, 2001.-
dc.description.referencesNoboru Endou, Keiko Narita, and Yasunari Shidama. The Lebesgue monotone convergence theorem. Formalized Mathematics, 16(2):167-175, 2008. doi:10.2478/v10037-008-0023-1.-
dc.description.referencesNoboru Endou, Hiroyuki Okazaki, and Yasunari Shidama. Hopf extension theorem of measure. Formalized Mathematics, 17(2):157-162, 2009. doi:10.2478/v10037-009-0018-6.-
dc.description.referencesGerald B. Folland. Real Analysis: Modern Techniques and Their Applications. Wiley, 2 edition, 1999.-
dc.description.referencesP. R. Halmos. Measure Theory. Springer-Verlag, 1974.-
dc.description.referencesAndrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.-
dc.description.referencesBeata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17-21, 1992.-
dc.description.referencesM.M. Rao. Measure Theory and Integration. Marcel Dekker, 2nd edition, 2004.-
dc.description.referencesAndrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.-
dc.description.referencesWojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.-
dc.description.referencesHiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior limit, superior limit and convergence of sequences of extended real numbers. Formalized Mathematics, 15(4):231-236, 2007. doi:10.2478/v10037-007-0026-3.-
Występuje w kolekcji(ach):Formalized Mathematics, 2016, Volume 24, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat