Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorFuta, Yuichi-
dc.contributor.authorShidama, Yasunari-
dc.identifier.citationFormalized Mathematics, Volume 24, Issue 1, pp. 49-68pl
dc.description.abstractIn this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].-
dc.publisherDe Gruyter Open-
dc.subjectGram matrix-
dc.subjectintegral ℤ-lattice-
dc.subjectpositive definite ℤ-lattice-
dc.titleLattice of ℤ-module-
dc.description.AffiliationFuta Yuichi - Japan Advanced Institute of Science and Technology Ishikawa, Japan-
dc.description.AffiliationShidama Yasunari - Shinshu University Nagano, Japan-
dc.description.referencesGrzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.-
dc.description.referencesGrzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3): 537-541, 1990.-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.-
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.-
dc.description.referencesCzesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.-
dc.description.referencesCzesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesWolfgang Ebeling. Lattices and Codes. Advanced Lectures in Mathematics. Springer Fachmedien Wiesbaden, 2013.-
dc.description.referencesYuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. ℤ-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.-
dc.description.referencesYuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Quotient module of ℤ-module. Formalized Mathematics, 20(3):205-214, 2012. doi:10.2478/v10037-012-0024-y.-
dc.description.referencesYuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, and Yasunari Shidama. Torsion ℤ-module and torsion-free ℤ-module. Formalized Mathematics, 22(4):277-289, 2014. doi:10.2478/forma-2014-0028.-
dc.description.referencesYuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Matrix of ℤ-module. Formalized Mathematics, 23(1):29-49, 2015. doi:10.2478/forma-2015-0003.-
dc.description.referencesA. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4), 1982.-
dc.description.referencesDaniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective. The International Series in Engineering and Computer Science, 2002.-
dc.description.referencesAndrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1 (2):329-334, 1990.-
dc.description.referencesWojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.-
Występuje w kolekcji(ach):Formalized Mathematics, 2016, Volume 24, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2016-0005.pdf302,42 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki

Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons