REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3712
Tytuł: Cauchy Mean Theorem
Autorzy: Grabowski, Adam
Słowa kluczowe: geometric mean
arithmetic mean
AM-GM inequality
Cauchy mean theorem
Data wydania: 2014
Data dodania: 9-gru-2015
Wydawca: De Gruyter Open
Źródło: Formalized Mathematics, Volume 22, Issue 2, 2014, Pages 157-166
Abstrakt: The purpose of this paper was to prove formally, using the Mizar language, Arithmetic Mean/Geometric Mean theorem known maybe better under the name of AM-GM inequality or Cauchy mean theorem. It states that the arithmetic mean of a list of a non-negative real numbers is greater than or equal to the geometric mean of the same list. The formalization was tempting for at least two reasons: one of them, perhaps the strongest, was that the proof of this theorem seemed to be relatively easy to formalize (e.g. the weaker variant of this was proven in [13]). Also Jensen’s inequality is already present in the Mizar Mathematical Library. We were impressed by the beauty and elegance of the simple proof by induction and so we decided to follow this specific way. The proof follows similar lines as that written in Isabelle [18]; the comparison of both could be really interesting as it seems that in both systems the number of lines needed to prove this are really close. This theorem is item #38 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/.
Afiliacja: Institute of Informatics University of Białystok Akademicka 2, 15-267 Białystok Poland
URI: http://hdl.handle.net/11320/3712
DOI: 10.2478/forma-2014-0016
ISSN: 1426-2630
1898-9934
Typ Dokumentu: Article
Występuje w kolekcji(ach):Artykuły naukowe (WMiI)
Formalized Mathematics, 2014, Volume 22, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2014-0016.pdf331,66 kBAdobe PDFOtwórz
Pokaż pełny widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons