REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3697
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorIshida, Kazuhisa-
dc.contributor.authorShidama, Yasunari-
dc.contributor.authorGrabowski, Adam-
dc.date.accessioned2015-12-09T20:40:37Z-
dc.date.available2015-12-09T20:40:37Z-
dc.date.issued2014-
dc.identifier.citationFormalized Mathematics, Volume 22, Issue 1, 2014, Pages 1-10-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3697-
dc.description.abstractThis text includes the definition and basic notions of product of posets, chain-complete and flat posets, flattening operation, and the existence theorems of recursive call using the flattening operator. First part of the article, devoted to product and flat posets has a purely mathematical quality. Definition 3 allows to construct a flat poset from arbitrary non-empty set [12] in order to provide formal apparatus which eanbles to work with recursive calls within the Mizar langauge. To achieve this we extensively use technical Mizar functors like BaseFunc or RecFunc. The remaining part builds the background for information engineering approach for lists, namely recursive call for posets [21].We formalized some facts from Chapter 8 of this book as an introduction to the next two sections where we concentrate on binary product of posets rather than on a more general case.-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.subjectflat posets-
dc.subjectrecursive calls for posets-
dc.subjectflattening operator-
dc.titleDefinition of Flat Poset and Existence Theorems for Recursive Call-
dc.typeArticle-
dc.identifier.doi10.2478/forma-2014-0001-
dc.description.AffiliationIshida Kazuhisa - Neyagawa-shi Osaka, Japan-
dc.description.AffiliationShidama Yasunari - Shinshu University Nagano, Japan-
dc.description.AffiliationGrabowski Adam - Institute of Informatics University of Białystok Akademicka 2, 15-267 Białystok Poland-
dc.description.referencesGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.-
dc.description.referencesGrzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesGrzegorz Bancerek. Bounds in posets and relational substructures. Formalized Mathematics, 6(1):81-91, 1997.-
dc.description.referencesCzesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.-
dc.description.referencesCzesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Bylinski. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.-
dc.description.referencesCzesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.-
dc.description.referencesCzesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesAgata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.-
dc.description.referencesB.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cambridge University Press, 2002.-
dc.description.referencesMarek Dudzicz. Representation theorem for finite distributive lattices. Formalized Mathematics, 9(2):261-264, 2001.-
dc.description.referencesAdam Grabowski. On the category of posets. Formalized Mathematics, 5(4):501-505, 1996. http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000258624500003&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=b7bc2757938ac7a7a821505f8243d9f3-
dc.description.referencesKazuhisa Ishida and Yasunari Shidama. Fixpoint theorem for continuous functions on chain-complete posets. Formalized Mathematics, 18(1):47-51, 2010. doi:10.2478/v10037-010-0006-x.-
dc.description.referencesArtur Korniłowicz. Cartesian products of relations and relational structures. Formalized Mathematics, 6(1):145-152, 1997.-
dc.description.referencesAndrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115-122, 1990.-
dc.description.referencesAndrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.-
dc.description.referencesWojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
dc.description.referencesGlynn Winskel. The Formal Semantics of Programming Languages. The MIT Press, 1993.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.-
dc.description.referencesEdmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.-
dc.description.referencesMariusz Zynel and Czesław Bylinski. Properties of relational structures, posets, lattices and maps. Formalized Mathematics, 6(1):123-130, 1997.-
Występuje w kolekcji(ach):Artykuły naukowe (WMiI)
Formalized Mathematics, 2014, Volume 22, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2014-0001.pdf263,17 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons