REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: `http://hdl.handle.net/11320/3680`
Pole DCWartośćJęzyk
dc.contributor.authorFuta, Yuichi-
dc.contributor.authorOkazaki, Hiroyuki-
dc.contributor.authorMizushima, Daichi-
dc.contributor.authorShidama, Yasunari-
dc.date.accessioned2015-12-09T20:39:34Z-
dc.date.available2015-12-09T20:39:34Z-
dc.date.issued2013-
dc.identifier.citationFormalized Mathematics, Volume 21, Issue 2, 2013, Pages 115-125-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3680-
dc.descriptionThis research was presented during the 2012 International Symposium on Information Theory and its Applications (ISITA2012) in Honolulu, USA.-
dc.description.abstractGaussian integer is one of basic algebraic integers. In this article we formalize some definitions about Gaussian integers [27]. We also formalize ring (called Gaussian integer ring), Z-module and Z-algebra generated by Gaussian integer mentioned above. Moreover, we formalize some definitions about Gaussian rational numbers and Gaussian rational number field. Then we prove that the Gaussian rational number field and a quotient field of the Gaussian integer ring are isomorphic.-
dc.description.sponsorshipThis work was supported by JSPS KAKENHI 21240001 and 22300285.-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.subjectformalization of Gaussian integers-
dc.subjectalgebraic integers-
dc.titleGaussian Integers-
dc.typeArticle-
dc.identifier.doi10.2478/forma-2013-0013-
dc.description.AffiliationFuta Yuichi - Japan Advanced Institute of Science and Technology Ishikawa, Japan-
dc.description.AffiliationOkazaki Hiroyuki - Shinshu University Nagano, Japan-
dc.description.AffiliationMizushima Daichi - Shinshu University Nagano, Japan-
dc.description.AffiliationShidama Yasunari - Shinshu University Nagano, Japan-
dc.description.referencesGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.-
dc.description.referencesGrzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589-593, 1990.-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesJózef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.-
dc.description.referencesCzesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.-
dc.description.referencesCzesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.-
dc.description.referencesCzesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.-
dc.description.referencesCzesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.-
dc.description.referencesCzesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesAgata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.-
dc.description.referencesYuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Set of points on elliptic curve in projective coordinates. Formalized Mathematics, 19(3):131-138, 2011. doi:10.2478/v10037-011-0021-6.-
dc.description.referencesYuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Z-modules. Formalized Mathematics, 20(1):47-59, 2012. doi:10.2478/v10037-012-0007-z.-
dc.description.referencesAndrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.-
dc.description.referencesEugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.-
dc.description.referencesRafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.-
dc.description.referencesMichał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3-11, 1991.-
dc.description.referencesChristoph Schwarzweller. The correctness of the generic algorithms of Brown and Henrici concerning addition and multiplication in fraction fields. Formalized Mathematics, 6(3): 381-388, 1997.-
dc.description.referencesChristoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.-
dc.description.referencesChristoph Schwarzweller. The field of quotients over an integral domain. Formalized Mathematics, 7(1):69-79, 1998.-
dc.description.referencesAndrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.-
dc.description.referencesAndrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.-
dc.description.referencesMichał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.-
dc.description.referencesWojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.-
dc.description.referencesWojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
dc.description.referencesAndr´e Weil. Number Theory for Beginners. Springer-Verlag, 1979.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.-
Występuje w kolekcji(ach):Formalized Mathematics, 2013, Volume 21, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat