REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3679
Tytuł: Polygonal Numbers
Autorzy: Grabowski, Adam
Słowa kluczowe: triangular number
polygonal number
reciprocals of triangular numbers
Data wydania: 2013
Data dodania: 9-gru-2015
Wydawca: De Gruyter Open
Źródło: Formalized Mathematics, Volume 21, Issue 2, 2013, Pages 103-113
Abstrakt: In the article the formal characterization of triangular numbers (famous from [15] and words “EYPHKA! num = Δ+Δ+Δ”) [17] is given. Our primary aim was to formalize one of the items (#42) from Wiedijk’s Top 100 Mathematical Theorems list [33], namely that the sequence of sums of reciprocals of triangular numbers converges to 2. This Mizar representation was written in 2007. As the Mizar language evolved and attributes with arguments were implemented, we decided to extend these lines and we characterized polygonal numbers. We formalized centered polygonal numbers, the connection between triangular and square numbers, and also some equalities involving Mersenne primes and perfect numbers. We gave also explicit formula to obtain from the polygonal number its ordinal index. Also selected congruences modulo 10 were enumerated. Our work basically covers the Wikipedia item for triangular numbers and the Online Encyclopedia of Integer Sequences (http://oeis.org/A000217). An interesting related result [16] could be the proof of Lagrange’s four-square theorem or Fermat’s polygonal number theorem [32].
Afiliacja: Institute of Informatics University of Białystok Akademicka 2, 15-267 Białystok Poland
URI: http://hdl.handle.net/11320/3679
DOI: 10.2478/forma-2013-0012
ISSN: 1426-2630
1898-9934
Typ Dokumentu: Article
Występuje w kolekcji(ach):Artykuły naukowe (WMiI)
Formalized Mathematics, 2013, Volume 21, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2013-0012.pdf251,25 kBAdobe PDFOtwórz
Pokaż pełny widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons