REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3677
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorNaumowicz, Adam-
dc.contributor.authorPiliszek, Radosław-
dc.date.accessioned2015-12-09T20:39:34Z-
dc.date.available2015-12-09T20:39:34Z-
dc.date.issued2013-
dc.identifier.citationFormalized Mathematics, Volume 21, Issue 2, 2013, Pages 87-94-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3677-
dc.description.abstractThis paper is a continuation of [19], where the divisibility criteria for initial prime numbers based on their representation in the decimal system were formalized. In the current paper we consider all primes up to 101 to demonstrate the method presented in [7].-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.subjectdivisibility-
dc.subjectdivisibility rules-
dc.subjectdecimal digits-
dc.titleMore on Divisibility Criteria for Selected Primes-
dc.typeArticle-
dc.identifier.doi10.2478/forma-2013-0010-
dc.description.AffiliationNaumowicz Adam - Institute of Informatics University of Białystok Sosnowa 64, 15-887 Białystok Poland-
dc.description.AffiliationPiliszek Radosław - Institute of Informatics University of Białystok Sosnowa 64, 15-887 Białystok Poland-
dc.description.referencesGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesGrzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.-
dc.description.referencesGrzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.-
dc.description.referencesGrzegorz Bancerek. Veblen hierarchy. Formalized Mathematics, 19(2):83-92, 2011. doi:10.2478/v10037-011-0014-5.-
dc.description.referencesC.C. Briggs. Simple divisibility rules for the 1st 1000 prime numbers. arXiv preprint arXiv:math/0001012, 2000.-
dc.description.referencesCzesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990.-
dc.description.referencesCzesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.-
dc.description.referencesCzesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesAgata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.-
dc.description.referencesKrzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.-
dc.description.referencesMagdalena Jastrz¸ebska and Adam Grabowski. Some properties of Fibonacci numbers. Formalized Mathematics, 12(3):307-313, 2004.-
dc.description.referencesArtur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.-
dc.description.referencesRafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.-
dc.description.referencesRafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829-832, 1990.-
dc.description.referencesYatsuka Nakamura and Hisashi Ito. Basic properties and concept of selected subsequence of zero based finite sequences. Formalized Mathematics, 16(3):283-288, 2008. doi:10.2478/v10037-008-0034-y.-
dc.description.referencesAdam Naumowicz. On the representation of natural numbers in positional numeral systems. Formalized Mathematics, 14(4):221-223, 2006. doi:10.2478/v10037-006-0025-9.-
dc.description.referencesKarol Pak. Stirling numbers of the second kind. Formalized Mathematics, 13(2):337-345, 2005.-
dc.description.referencesPiotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.-
dc.description.referencesAndrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341-347, 2003.-
dc.description.referencesMichał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
dc.description.referencesTetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.-
dc.description.referencesEdmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.-
Występuje w kolekcji(ach):Artykuły naukowe (WMiI)
Formalized Mathematics, 2013, Volume 21, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2013-0010.pdf216 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons