REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3676
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorArnaud, Adam St.-
dc.contributor.authorRudnicki, Piotr-
dc.date.accessioned2015-12-09T20:39:33Z-
dc.date.available2015-12-09T20:39:33Z-
dc.date.issued2013-
dc.identifier.citationFormalized Mathematics, Volume 21, Issue 2, 2013, Pages 83-85-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3676-
dc.descriptionI would like to thank Piotr Rudnicki for taking me on as his summer student and being a mentor to me. Piotr was an incredibly caring, intelligent, funny, passionate human being. I am proud to know I was his last student, in a long line of students he has mentored and cared about throughout his life. Thank you Piotr, for the opportunity you gave me, and for the faith, confidence and trust you showed in me. I will miss you.-
dc.description.abstractWe first provide a modified version of the proof in [3] that the Sorgenfrey line is T1. Here, we prove that it is in fact T2, a stronger result. Next, we prove that all subspaces of ℝ1 (that is the real line with the usual topology) are Lindel¨of. We utilize this result in the proof that the Sorgenfrey line is Lindel¨of, which is based on the proof found in [8]. Next, we construct the Sorgenfrey plane, as the product topology of the Sorgenfrey line and itself. We prove that the Sorgenfrey plane is not Lindel¨of, and therefore the product space of two Lindel¨of spaces need not be Lindel¨of. Further, we note that the Sorgenfrey line is regular, following from [3]:59. Next, we observe that the Sorgenfrey line is normal since it is both regular and Lindel¨of. Finally, we prove that the Sorgenfrey plane is not normal, and hence the product of two normal spaces need not be normal. The proof that the Sorgenfrey plane is not normal and many of the lemmas leading up to this result are modelled after the proof in [3], that the Niemytzki plane is not normal. Information was also gathered from [15].-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.subjecttopological spaces-
dc.subjectproducts of normal spaces-
dc.subjectSorgenfrey line-
dc.subjectSorgenfrey plane-
dc.subjectLindelöf spaces-
dc.titleSome Properties of the Sorgenfrey Line and the Sorgenfrey Plane-
dc.typeArticle-
dc.identifier.doi10.2478/forma-2013-0009-
dc.description.AffiliationArnaud Adam St. - University of Alberta Edmonton, Canada-
dc.description.AffiliationRudnicki Piotr - University of Alberta Edmonton, Canada-
dc.description.referencesGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.-
dc.description.referencesGrzegorz Bancerek. On constructing topological spaces and Sorgenfrey line. Formalized Mathematics, 13(1):171-179, 2005.-
dc.description.referencesGrzegorz Bancerek. Niemytzki plane - an example of Tychonoff space which is not T4. Formalized Mathematics, 13(4):515-524, 2005.-
dc.description.referencesGrzegorz Bancerek. Bases and refinements of topologies. Formalized Mathematics, 7(1): 35-43, 1998.-
dc.description.referencesCzesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesAgata Darmochwał and Yatsuka Nakamura. Metric spaces as topological spaces - fundamental concepts. Formalized Mathematics, 2(4):605-608, 1991.-
dc.description.referencesRyszard Engelking. Outline of General Topology. North-Holland Publishing Company, 1968.-
dc.description.referencesAdam Grabowski. On the boundary and derivative of a set. Formalized Mathematics, 13 (1):139-146, 2005.-
dc.description.referencesAdam Grabowski. On the Borel families of subsets of topological spaces. Formalized Mathematics, 13(4):453-461, 2005.-
dc.description.referencesAndrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990.-
dc.description.referencesBeata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.-
dc.description.referencesKarol Pak. Basic properties of metrizable topological spaces. Formalized Mathematics, 17(3):201-205, 2009. doi:10.2478/v10037-009-0024-8.-
dc.description.referencesKonrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.-
dc.description.referencesLynn Arthur Steen and J. Arthur Jr. Seebach. Counterexamples in Topology. Springer-Verlag, 1978.-
dc.description.referencesAndrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4): 535-545, 1991.-
dc.description.referencesAndrzej Trybulec. Subsets of complex numbers. Mizar Mathematical Library.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990.-
dc.description.referencesMirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.-
Występuje w kolekcji(ach):Formalized Mathematics, 2013, Volume 21, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
forma-2013-0009.pdf193,08 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons