Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
                
    
    http://hdl.handle.net/11320/3672Pełny rekord metadanych
| Pole DC | Wartość | Język | 
|---|---|---|
| dc.contributor.author | Rowinska-Schwarzweller, Agnieszka | - | 
| dc.contributor.author | Schwarzweller, Christoph | - | 
| dc.date.accessioned | 2015-12-09T20:39:06Z | - | 
| dc.date.available | 2015-12-09T20:39:06Z | - | 
| dc.date.issued | 2013 | - | 
| dc.identifier.citation | Formalized Mathematics, Volume 21, Issue 1, 2013, Pages 47-53 | - | 
| dc.identifier.issn | 1426-2630 | - | 
| dc.identifier.issn | 1898-9934 | - | 
| dc.identifier.uri | http://hdl.handle.net/11320/3672 | - | 
| dc.description.abstract | A complex polynomial is called a Hurwitz polynomial, if all its roots have a real part smaller than zero. This kind of polynomial plays an all-dominant role in stability checks of electrical (analog or digital) networks. In this article we prove that a polynomial p can be shown to be Hurwitz by checking whether the rational function e(p)/o(p) can be realized as a reactance of one port, that is as an electrical impedance or admittance consisting of inductors and capacitors. Here e(p) and o(p) denote the even and the odd part of p [25]. | - | 
| dc.language.iso | en | - | 
| dc.publisher | De Gruyter Open | - | 
| dc.title | A Test for the Stability of Networks | - | 
| dc.type | Article | - | 
| dc.identifier.doi | 10.2478/forma-2013-0005 | - | 
| dc.description.Affiliation | Rowinska-Schwarzweller Agnieszka - Chair of Display Technology University of Stuttgart Allmandring 3b, 70596 Stuttgart, Germany | - | 
| dc.description.Affiliation | Schwarzweller Christoph - Institute of Computer Science University of Gdansk Wita Stwosza 57, 80-952 Gdansk, Poland | - | 
| dc.description.references | Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. | - | 
| dc.description.references | Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. | - | 
| dc.description.references | Czesław Bylinski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. | - | 
| dc.description.references | Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1): 55-65, 1990. | - | 
| dc.description.references | Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. | - | 
| dc.description.references | Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. | - | 
| dc.description.references | Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. | - | 
| dc.description.references | Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841-845, 1990. | - | 
| dc.description.references | Eugeniusz Kusak, Wojciech Leonczuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. | - | 
| dc.description.references | Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265-269, 2001. | - | 
| dc.description.references | Robert Milewski. The ring of polynomials. Formalized Mathematics, 9(2):339-346, 2001. | - | 
| dc.description.references | Robert Milewski. The evaluation of polynomials. Formalized Mathematics, 9(2):391-395, 2001. | - | 
| dc.description.references | Robert Milewski. Fundamental theorem of algebra. Formalized Mathematics, 9(3):461-470, 2001. | - | 
| dc.description.references | Michał Muzalewski and Wojciech Skaba. From loops to abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833-840, 1990. | - | 
| dc.description.references | Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991. | - | 
| dc.description.references | Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997. | - | 
| dc.description.references | Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001. | - | 
| dc.description.references | Christoph Schwarzweller. Introduction to rational functions. Formalized Mathematics, 20 (2):181-191, 2012. doi:10.2478/v10037-012-0021-1. | - | 
| dc.description.references | Christoph Schwarzweller and Agnieszka Rowinska-Schwarzweller. Schur’s theorem on the stability of networks. Formalized Mathematics, 14(4):135-142, 2006. doi:10.2478/v10037-006-0017-9. | - | 
| dc.description.references | Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990. | - | 
| dc.description.references | Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. | - | 
| dc.description.references | Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990. | - | 
| dc.description.references | Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. | - | 
| dc.description.references | Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. | - | 
| dc.description.references | Rolf Unbehauen. Netzwerk- und Filtersynthese: Grundlagen und Anwendungen. Oldenbourg-Verlag, fourth edition, 1993. | - | 
| dc.description.references | Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73-83, 1990. | - | 
| dc.description.references | Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992. | - | 
| Występuje w kolekcji(ach): | Formalized Mathematics, 2013, Volume 21, Issue 1 | |
Pliki w tej pozycji:
| Plik | Opis | Rozmiar | Format | |
|---|---|---|---|---|
| forma-2013-0005.pdf | 205,12 kB | Adobe PDF | Otwórz | 
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL
     
    


