REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3621
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorJaeger, Peter-
dc.date.accessioned2015-12-06T19:05:18Z-
dc.date.available2015-12-06T19:05:18Z-
dc.date.issued2012-
dc.identifier.citationFormalized Mathematics, Volume 20, Issue 1, 2012, Pages 1-5-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3621-
dc.description.abstractThis article gives an elementary introduction to stochastic finance (in discrete time). A formalization of random variables is given and some elements of Borel sets are considered. Furthermore, special functions (for buying a present portfolio and the value of a portfolio in the future) and some statements about the relation between these functions are introduced. For details see: [8] (p. 185), [7] (pp. 12, 20), [6] (pp. 3-6).-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.titleElementary Introduction to Stochastic Finance in Discrete Time-
dc.typeArticle-
dc.identifier.doi10.2478/v10037-012-0001-5-
dc.description.AffiliationLudwig Maximilians University of Munich, Germany-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.-
dc.description.referencesCzesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesNoboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties of measurable functions. Formalized Mathematics, 9(3):495-500, 2001.-
dc.description.referencesHans Föllmer and Alexander Schied. Stochastic Finance: An Introduction in Discrete Time, volume 27 of Studies in Mathematics. de Gruyter, Berlin, 2nd edition, 2004.-
dc.description.referencesHans-Otto Georgii. Stochastik, Einführung in die Wahrscheinlichkeitstheorie und Statistik. deGruyter, Berlin, 2 edition, 2004.-
dc.description.referencesAchim Klenke. Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, Heidelberg, 2006.-
dc.description.referencesJarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.-
dc.description.referencesAndrzej Nędzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.-
dc.description.referencesKonrad Raczkowski and Andrzej Nędzusiak. Series. Formalized Mathematics, 2(4):449-452, 1991.-
dc.description.referencesKonrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.-
dc.description.referencesAndrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.-
dc.description.referencesMichał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
Występuje w kolekcji(ach):Formalized Mathematics, 2012, Volume 20, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
v10037-012-0001-5.pdf275,16 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons