Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
Tytuł: Definition of First Order Language with Arbitrary Alphabet. Syntax of Terms, Atomic Formulas and their Subterms
Autorzy: Caminati, Marco
Data wydania: 2011
Data dodania: 6-gru-2015
Wydawca: De Gruyter Open
Źródło: Formalized Mathematics, Volume 19, Issue 3, 2011, Pages 169-178
Abstrakt: Second of a series of articles laying down the bases for classical first order model theory. A language is defined basically as a tuple made of an integer-valued function (adicity), a symbol of equality and a symbol for the NOR logical connective. The only requests for this tuple to be a language is that the value of the adicity in = is -2 and that its preimage (i.e. the variables set) in 0 is infinite. Existential quantification will be rendered (see [11]) by mere prefixing a formula with a letter. Then the hierarchy among symbols according to their adicity is introduced, taking advantage of attributes and clusters. The strings of symbols of a language are depth-recursively classified as terms using the standard approach (see for example [16], definition 1.1.2); technically, this is done here by deploying the ‘-multiCat' functor and the ‘unambiguous’ attribute previously introduced in [10], and the set of atomic formulas is introduced. The set of all terms is shown to be unambiguous with respect to concatenation; we say that it is a prefix set. This fact is exploited to uniquely define the subterms both of a term and of an atomic formula without resorting to a parse tree.
Afiliacja: Mathematics Department "G. Castelnuovo", Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
DOI: 10.2478/v10037-011-0026-1
ISSN: 1426-2630
Typ Dokumentu: Article
Występuje w kolekcji(ach):Formalized Mathematics, 2011, Volume 19, Issue 3

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
v10037-011-0026-1.pdf283,98 kBAdobe PDFOtwórz
Pokaż pełny widok rekordu Zobacz statystyki

Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons