REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/3564
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorPąk, Karol-
dc.date.accessioned2015-12-02T18:02:14Z-
dc.date.available2015-12-02T18:02:14Z-
dc.date.issued2010-
dc.identifier.citationFormalized Mathematics, Volume 18, Issue 1, 2010, Pages 87-93-
dc.identifier.issn1426-2630-
dc.identifier.issn1898-9934-
dc.identifier.urihttp://hdl.handle.net/11320/3564-
dc.description.abstractIn this article we describe the notion of affinely independent subset of a real linear space. First we prove selected theorems concerning operations on linear combinations. Then we introduce affine independence and prove the equivalence of various definitions of this notion. We also introduce the notion of the affine hull, i.e. a subset generated by a set of vectors which is an intersection of all affine sets including the given set. Finally, we introduce and prove selected properties of the barycentric coordinates.-
dc.language.isoen-
dc.publisherDe Gruyter Open-
dc.titleAffine Independence in Vector Spaces-
dc.typeArticle-
dc.identifier.doi10.2478/v10037-010-0012-z-
dc.description.AffiliationInstitute of Informatics, University of Białystok, Poland-
dc.description.referencesGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.-
dc.description.referencesCzesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.-
dc.description.referencesCzesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesCzesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.-
dc.description.referencesNoboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.-
dc.description.referencesNoboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.-
dc.description.referencesKrzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.-
dc.description.referencesJarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.-
dc.description.referencesAndrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.-
dc.description.referencesWojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.-
dc.description.referencesWojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.-
dc.description.referencesWojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.-
Występuje w kolekcji(ach):Artykuły naukowe (WMiI)
Formalized Mathematics, 2010, Volume 18, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
v10037-010-0012-z.pdf275,17 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons