Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/3548| Tytuł: | Dilworth's Decomposition Theorem for Posets |
| Autorzy: | Rudnicki, Piotr |
| Data wydania: | 2009 |
| Data dodania: | 2-gru-2015 |
| Wydawca: | De Gruyter Open |
| Źródło: | Formalized Mathematics, Volume 17, Issue 4, 2009, Pages 223-232 |
| Abstrakt: | The following theorem is due to Dilworth [8]: Let P be a partially ordered set. If the maximal number of elements in an independent subset (anti-chain) of P is k, then P is the union of k chains (cliques). In this article we formalize an elegant proof of the above theorem for finite posets by Perles [13]. The result is then used in proving the case of infinite posets following the original proof of Dilworth [8]. A dual of Dilworth's theorem also holds: a poset with maximum clique m is a union of m independent sets. The proof of this dual fact is considerably easier; we follow the proof by Mirsky [11]. Mirsky states also a corollary that a poset of r x s + 1 elements possesses a clique of size r + 1 or an independent set of size s + 1, or both. This corollary is then used to prove the result of Erdős and Szekeres [9]. Instead of using posets, we drop reflexivity and state the facts about anti-symmetric and transitive relations. |
| Afiliacja: | University of Alberta, Edmonton, Canada |
| URI: | http://hdl.handle.net/11320/3548 |
| DOI: | 10.2478/v10037-009-0028-4 |
| ISSN: | 1426-2630 1898-9934 |
| Typ Dokumentu: | Article |
| Występuje w kolekcji(ach): | Formalized Mathematics, 2009, Volume 17, Issue 4 |
Pliki w tej pozycji:
| Plik | Opis | Rozmiar | Format | |
|---|---|---|---|---|
| v10037-009-0028-4.pdf | 254,28 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL
