REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: `http://hdl.handle.net/11320/3531`
 Tytuł: Properties of Primes and Multiplicative Group of a Field Autorzy: Arai, KenichiOkazaki, Hiroyuki Data wydania: 2009 Data dodania: 1-gru-2015 Wydawca: De Gruyter Open Źródło: Formalized Mathematics, Volume 17, Issue 2, 2009, Pages 151-155 Abstrakt: In the [16] has been proven that the multiplicative group Z/pZ* is a cyclic group. Likewise, finite subgroup of the multiplicative group of a field is a cyclic group. However, finite subgroup of the multiplicative group of a field being a cyclic group has not yet been proven. Therefore, it is of importance to prove that finite subgroup of the multiplicative group of a field is a cyclic group. Meanwhile, in cryptographic system like RSA, in which security basis depends upon the difficulty of factorization of given numbers into prime factors, it is important to employ integers that are difficult to be factorized into prime factors. If both p and 2p + 1 are prime numbers, we call p as Sophie Germain prime, and 2p + 1 as safe prime. It is known that the product of two safe primes is a composite number that is difficult for some factoring algorithms to factorize into prime factors. In addition, safe primes are also important in cryptography system because of their use in discrete logarithm based techniques like Diffie-Hellman key exchange. If p is a safe prime, the multiplicative group of numbers modulo p has a subgroup of large prime order. However, no definitions have not been established yet with the safe prime and Sophie Germain prime. So it is important to give definitions of the Sophie Germain prime and safe prime. In this article, we prove finite subgroup of the multiplicative group of a field is a cyclic group, and, further, define the safe prime and Sophie Germain prime, and prove several facts about them. In addition, we define Mersenne number (Mn), and some facts about Mersenne numbers and prime numbers are proven. Afiliacja: Arai Kenichi - Shinshu University, Nagano, JapanOkazaki Hiroyuki - Shinshu University, Nagano, Japan URI: http://hdl.handle.net/11320/3531 DOI: 10.2478/v10037-009-0017-7 ISSN: 1426-26301898-9934 Typ Dokumentu: Article Występuje w kolekcji(ach): Formalized Mathematics, 2009, Volume 17, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat