Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorRiccardi, Marco-
dc.identifier.citationFormalized Mathematics, Volume 17, Issue 2, 2009, Pages 123-128-
dc.description.abstractThis article formalizes proofs of some elementary theorems of number theory (see [1, 26]): Wilson's theorem (that n is prime iff n > 1 and (n - 1)! ≅ -1 (mod n)), that all primes (1 mod 4) equal the sum of two squares, and two basic theorems of Euclid and Euler about perfect numbers. The article also formally defines Euler's sum of divisors function Φ, proves that Φ is multiplicative and that Σ k|n Φ(k) = n.-
dc.publisherDe Gruyter Open-
dc.titleThe Perfect Number Theorem and Wilson's Theorem-
dc.description.AffiliationCasella Postale 49, 54038 Montignoso, Italy-
dc.description.referencesM. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin Heidelberg New York, 2004.-
dc.description.referencesGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.-
dc.description.referencesGrzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.-
dc.description.referencesGrzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.-
dc.description.referencesGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.-
dc.description.referencesGrzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.-
dc.description.referencesJózef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.-
dc.description.referencesCzesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.-
dc.description.referencesCzesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.-
dc.description.referencesCzesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.-
dc.description.referencesCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.-
dc.description.referencesCzesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.-
dc.description.referencesCzesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.-
dc.description.referencesCzesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.-
dc.description.referencesCzesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.-
dc.description.referencesAgata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.-
dc.description.referencesYoshinori Fujisawa and Yasushi Fuwa. The Euler's function. Formalized Mathematics, 6(4):549-551, 1997.-
dc.description.referencesYoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.-
dc.description.referencesKrzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.-
dc.description.referencesKrzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.-
dc.description.referencesMagdalena Jastrzebska and Adam Grabowski. On the properties of the Möbius function. Formalized Mathematics, 14(1):29-36, 2006, doi:10.2478/v10037-006-0005-0.-
dc.description.referencesArtur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004.-
dc.description.referencesJarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.-
dc.description.referencesRafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.-
dc.description.referencesRafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.-
dc.description.referencesW. J. LeVeque. Fundamentals of Number Theory. Dover Publication, New York, 1996.-
dc.description.referencesTakaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.-
dc.description.referencesBeata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.-
dc.description.referencesPiotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):49-58, 2004.-
dc.description.referencesPiotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.-
dc.description.referencesPiotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.-
dc.description.referencesAndrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.-
dc.description.referencesAndrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.-
dc.description.referencesAndrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.-
dc.description.referencesAndrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.-
dc.description.referencesMichał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.-
dc.description.referencesWojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.-
dc.description.referencesZinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.-
dc.description.referencesEdmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.-
dc.description.referencesEdmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.-
dc.description.referencesHiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura. Bessel's inequality. Formalized Mathematics, 11(2):169-173, 2003.-
Występuje w kolekcji(ach):Formalized Mathematics, 2009, Volume 17, Issue 2

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
v10037-009-0013-y.pdf214,83 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki

Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons