REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/18171
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorPawlak, Tomasz-
dc.contributor.authorCzajkowska-Szczykowska, Dorota-
dc.contributor.authorJastrzębska, Izabella-
dc.contributor.authorSantillan, Rosa-
dc.contributor.authorSeroka, Barbara-
dc.contributor.authorMaj, Jadwiga-
dc.contributor.authorMorzycki, Jacek W.-
dc.contributor.authorLabra-Vázquez, Pablo-
dc.contributor.authorFarfán, Norberto-
dc.contributor.authorBujacz, Grzegorz D.-
dc.contributor.authorPotrzebowski, Marek J.-
dc.date.accessioned2025-04-08T06:39:00Z-
dc.date.available2025-04-08T06:39:00Z-
dc.date.issued2020-
dc.identifier.citationCrystal Growth & Design, Vol 20, issue 4, 2020, s. 2202-2216pl
dc.identifier.issn1528-7483-
dc.identifier.urihttp://hdl.handle.net/11320/18171-
dc.descriptionThe computational resources were partially provided by the Polish Infrastructure for Supporting Computational Science in the European Research Space (PL-GRID). Authors would like to express their gratitude to PAIP (IN222819) for financial support. P.L-V. gratefully acknowledges a doctoral scholarship from CONACYT (337958)pl
dc.description.abstractTwo, acyclic (1) and cyclic (2), steroidal molecular rotors containing 1,4-diethynyl-2,3-difluoro-phenylene units as rotators were investigated by means of single crystal X-ray diffraction, high resolution solid state NMR spectroscopy, and computer methods. The aim of this study was to understand and search for a correlation between the size of difluoro-phenylene units and free space in the crystal lattice required for molecular reorientation as well as the topology and time scale of dynamic processes. As a primary tool for analysis of molecular motions in the solid state, 1H–13C PISEMA, a technique which allows following the dynamics in the range of 10–3–10–6 s, was employed. The PISEMA data defining the 1H–13C dipolar couplings, whose values are sensitive to local motion, were confronted with 13C CSA parameters. Our studies revealed that replacing hydrogen by fluorine in acyclic rotors has significant consequences for dynamic processes. In the case of hydrogen-substituted species, free rotation around the 1–4 axis of the benzene ring was proven. For fluorine derivatives 1, only small amplitude wobbling of aromatic residues was observed. The only large amplitude reorientation, a so-called π-jump around the 1–4 axis, was observed during the phase transition related with solvent migration from the crystal lattice. For cyclic rotors (2) two crystallographic forms 2A (triclinic, P1 space group) and 2B (monoclinic, P21 space group) are established. The form 2B containing a heptane molecule in the crystal lattice undergoes a thermal transition with large amplitude motion of building units of the steroidal frame. The high dynamics of the fluorinated rotator for 2A is proven.pl
dc.language.isoenpl
dc.publisherACS Publicationspl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleInfluence of Hydrogen/Fluorine Substitution on Structure, Thermal Phase Transitions, and Internal Molecular Motion of Aromatic Residues in the Crystal Lattice of Steroidal Rotorspl
dc.typeArticlepl
dc.rights.holderThis is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.pl
dc.identifier.doi10.1021/acs.cgd.9b01179-
dc.description.EmailTomasz Pawlak: tpawlak@cbmm.lodz.pl, tpawlak@wp.eupl
dc.description.EmailMarek J. Potrzebowski: marekpot@cbmm.lodz.plpl
dc.description.AffiliationTomasz Pawlak − Centre of Molecular and Macromolecular Studies, Polish Academy of Sciencespl
dc.description.AffiliationDorota Czajkowska-Szczykowska − Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationIzabella Jastrzebska − Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationRosa Santillan − Departamento de Quıḿica, Centro de Investigacióny de Estudios Avanzados del IPNpl
dc.description.AffiliationBarbara Seroka − Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationJadwiga Maj − Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationJacek W. Morzycki − Faculty of Chemistry, University of Białystokpl
dc.description.AffiliationPablo Labra-Vázquez − Facultad de Quıḿica, Departamento de Quıḿica Orgańica, Universidad Nacional Autońoma de Méxicopl
dc.description.AffiliationNorberto Farfán − Facultad de Quıḿica, Departamento de Quıḿica Orgańica, Universidad Nacional Autońoma de Méxicopl
dc.description.AffiliationGrzegorz D. Bujacz − Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Lodz University of Technologypl
dc.description.AffiliationMarek J. Potrzebowski − Centre of Molecular and Macromolecular Studies, Polish Academy of Sciencespl
dc.description.referencesProkop, A.; Vacek, J.; Michl, J. Friction in Carborane-Based Molecular Rotors Driven by Gas Flow or Electric Field: Classical Molecular Dynamics. ACS Nano 2012, 6, 1901−1914.pl
dc.description.referencesRodríguez-Velamazán , J.; Gonzaléz, M. A.; Real, J. A.; Castro, M.; Muñoz, M. C.; Gaspar, A. B.; Ohtani, R.; Ohba, M.; Yoneda, K.; Hijikata, Y.; Yanai, N.; Mizuno, M.; Ando, H.; Kitagawa, S. A Switchable Molecular Rotator: Neutron Spectroscopy Study on a Polymeric Spin-Crossover Compound. J. Am. Chem. Soc. 2012, 134, 5083−5089.pl
dc.description.referencesCoskun, A.; Banaszak, M.; Astumian, R. D.; Stoddart, J. F.; Grzybowski, B. A. Great Expectations: Can Artificial Molecular Machines Deliver on Their Promise? Chem. Soc. Rev. 2012, 41, 19−30.pl
dc.description.referencesGarcia-Garibay, M. A. Molecular Machines: Nanoscale Gadgets. Nat. Mater. 2008, 7, 431−432.pl
dc.description.referencesGarcia-Garibay, M. A. Molecular Crystals on the Move: From Single-Crystal-to-Single-Crystal Photoreactions to Molecular Machinery. Angew. Chem., Int. Ed. 2007, 46, 8945−8947.pl
dc.description.referencesVogelsberg, C. S.; Garcia-Garibay, M. A. Crystalline Molecular Machines: Function, Phase Order, Dimensionality, and Composition. Chem. Soc. Rev. 2012, 41, 1892−1910.pl
dc.description.referencesArcos-Ramos, R.; Rodriguez-Molina, B.; Gonzalez-Rodriguez, E.; Ramirez-Montes, P. I.; Ochoa, M. E.; Santillan, R.; Farfán, N.; Garcia-Garibay, M. A. Crystalline Arrays of Molecular Rotors with TIPSTrityl and Phenolic-Trityl Stators Using Phenylene, 1,2-Difluorophenylene and Pyridine Rotators. RSC Adv. 2015, 5, 55201−55208.pl
dc.description.referencesArcos-Ramos, R.; Rodriguez-Molina, B.; Romero, M.; Méndez-Stivalet, J. M.; Ochoa, M. E.; Ramirez-Montes, P. I.; Santillan, R.; Garcia-Garibay, M. A.; Farfán, N. Synthesis and Evaluation of Molecular Rotors with Large and Bulky tert-Butyldiphenylsilyloxy-Substituted Trityl Stators. J. Org. Chem. 2012, 77, 6887−6894.pl
dc.description.referencesvan Delden, R. A.; ter Wiel, M. K. J.; Pollard, M. M.; Vicario, J.; Koumura, N.; Feringa, B. L. Unidirectional Molecular Motor on a Gold Surface. Nature 2005, 437, 1337−1340.pl
dc.description.referencesHorinek, D.; Michl, J. Surface-Mounted Altitudinal Molecular Rotors in Alternating Electric Field: Single-Molecule Parametric Oscillator Molecular Dynamics. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 14175−14180.pl
dc.description.referencesSkopek, K.; Gladysz, J. A. Syntheses of Gyroscope-Like Molecules via Three-Fold Ring Closing Metatheses of Bis(phosphine) Complexes trans-LᵧM(P((CH₂)ₙCH=CH₂)₃)₂, and Extensions to Bis(phosphite) Complexes trans-Fe(CO)₃(P(O(CH₂)ₙCH= CH₂)₃)₂. J. Organomet. Chem. 2008, 693, 857−866.pl
dc.description.referencesScarso, A.; Onagi, H.; Rebek, J. Mechanically Regulated Rotation of a Guest in a Nanoscale Host. J. Am. Chem. Soc. 2004, 126, 12728−12729.pl
dc.description.referencesAkutagawa, T.; Shitagami, K.; Nishihara, S.; Takeda, S.; Hasegawa, T.; Nakamura, T.; Hosokoshi, Y.; Inoue, K.; Ikeuchi, S.; Miyazaki, Y.; Saito, K. Molecular Rotor of Cₛ₂(18]crown-6)₃ in the Solid State Coupled with the Magnetism of [Ni(dmit)₂]. J. Am. Chem. Soc. 2005, 127, 4397−4402.pl
dc.description.referencesJian, H.; Tour, J. M. En Route to Surface-Bound Electric Field- Driven Molecular Motors. J. Org. Chem. 2003, 68, 5091−5103.pl
dc.description.referencesKottas, G. S.; Clarke, L. I.; Horinek, D.; Michl, J. Artificial Molecular Rotors. Chem. Rev. 2005, 105, 1281−1376.pl
dc.description.referencesBrowne, W. R.; Feringa, B. L. Making Molecular Machines Work. Nat. Nanotechnol. 2006, 1, 25−35.pl
dc.description.referencesSkopek, K.; Hershberger, M. C.; Gladysz, J. A. Gyroscopes and the Chemical Literature: 1852−2002. Coord. Chem. Rev. 2007, 251, 1723−1733.pl
dc.description.referencesKay, E. R.; Leigh, D. A.; Zerbetto, F. Synthetic Molecular Motors and Mechanical Machines. Angew. Chem., Int. Ed. 2007, 46, 72−191.pl
dc.description.referencesPease, A. R.; Jeppesen, J. O.; Stoddart, J. F.; Luo, Y.; Collier, P. C.; Heath, J. R. Switching Devices Based on Interlocked Molecules. Acc. Chem. Res. 2001, 34, 433−444.pl
dc.description.referencesLeigh, D. A.; Wong, J. K. Y.; Dehez, F.; Zerbetto, F. Unidirectional Rotation in a Mechanically Interlocked Molecular Rotor. Nature 2003, 424, 174−179.pl
dc.description.referencesKarim, A. R.; Linden, A.; Baldridge, K. K.; Siegel, J. S. Symmetry and Polar-π Effects on the Dynamics of Enshrouded Aryl-Alkyne Molecular Rotors. Chem. Sci. 2010, 1, 102−110.pl
dc.description.referencesBracco, S.; Beretta, M.; Cattaneo, A.; Comotti, A.; Falqui, A.; Zhao, K.; Rogers, C.; Sozzani, P. Dipolar Rotors Orderly Aligned in Mesoporous Fluorinated Organosilica Architectures. Angew. Chem., Int. Ed. 2015, 54, 4773−4777.pl
dc.description.referencesBracco, S.; Castiglioni, F.; Comotti, A.; Galli, S.; Negroni, M.; Maspero, A.; Sozzani, P. Ultrafast Molecular Rotors and Their CO2 Tuning in MOFs with Rod-Like Ligands. Chem.-Eur. J. 2017, 23, 11210−11215.pl
dc.description.referencesBracco, S.; Miyano, T.; Negroni, M.; Bassanetti, I.; Marchio, L.; Sozzani, P.; Tohnai, N.; Comotti, A. CO2 Regulates Molecular Rotor Dynamics in Porous Materials. Chem. Commun. 2017, 53, 7776−7779.pl
dc.description.referencesRodriguez-Molina, B.; Farfán, N.; Romero, M.; Méndez-Stivalet, J. M.; Santillan, R.; Garcia-Garibay, M. A. Anisochronous Dynamics in a Crystalline Array of Steroidal Molecular Rotors: Evidence of Correlated Motion within 1D Helical Domains. J. Am. Chem. Soc. 2011, 133, 7280−7283pl
dc.description.referencesRodriguez-Molina, B.; Ochoa, Ma. E.; Romero, M.; Khan, S. I.; Farfán, N.; Santillan, R.; Garcia-Garibay, M. A. Conformational Polymorphism and Isomorphism of Molecular Rotors with Fluoroaromatic Rotators and Mestranol Stators. Cryst. Growth Des. 2013, 13, 5107−5115.pl
dc.description.referencesJiménez-Garcia, C.; Arcos-Ramos, R.; Méndez-Stivalet, J. M.; Santillan, R.; Farfán, N. Synthesis and Characterization of Dissymmetric Molecular Rotors Based on 1,4-Diethynylphenylene Rotators and Steroidal/Trityl Type Stators. Monatsh. Chem. 2015, 146, 1005−1013.pl
dc.description.referencesRodriguez-Molina, B.; Pozos, A.; Cruz, R.; Romero, M.; Flores, B.; Farfán, N.; Santillan, R.; Garcia-Garibay, M. A. Synthesis and Solid State Characterization of Molecular Rotors with Steroidal Stators: Ethisterone and Norethisterone. Org. Biomol. Chem. 2010, 8, 2993−3000.pl
dc.description.referencesJastrzebska, I.; Pawlak, T.; Arcos-Ramos, R.; Florez-Lopez, E.; Farfan, N.; Czajkowska-Szczykowska, D.; Maj, J.; Santillan, R.; Morzycki, J. W.; Potrzebowski, M. J. Synthesis, Structure, and Local Molecular Dynamics for Crystalline Rotors Based on Hecogenin/Botogenin Steroidal Frameworks. Cryst. Growth Des. 2016, 16, 5698−5709.pl
dc.description.referencesMayorquin-Torres, M. C.; Colin-Molina, A.; Perez-Estrada, S.; Galano, A.; Rodriguez-Molina, B.; Iglesias-Arteaga, M. A. Synthesis, Characterization, and Solid State Dynamic Studies of a Hydrogen Bond-Hindered Steroidal Molecular Rotor with a Flexible Axis. J. Org. Chem. 2018, 83, 3768−3779.pl
dc.description.referencesDolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339.pl
dc.description.referencesSheldrick, G. A Short History of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112−122.pl
dc.description.referencesFarrugia, L. J. WinGX Suite for Small-Molecule Single-Crystal Crystallography. J. Appl. Crystallogr. 1999, 32, 837−838.pl
dc.description.referencesMacrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and Analysis of Crystal Structures. J. Appl. Crystallogr. 2006, 39, 453−457.pl
dc.description.referencesFarrugia, L. J. ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI). J. Appl. Crystallogr. 1997, 30, 565.pl
dc.description.referencesMorcombe, C. R.; Zilm, K. W. Chemical Shift Referencing in MAS Solid State NMR. J. Magn. Reson. 2003, 162, 479−486.pl
dc.description.referencesMetz, G.; Wu, X.; Smith, S. O. Ramped-Amplitude Cross Polarization in Magic-Angle-Spinning NMR. J. Magn. Reson., Ser. A 1994, 110, 219−227.pl
dc.description.referencesBennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V.; Griffin, R. G. Heteronuclear Decoupling in Rotating Solids. J. Chem. Phys. 1995, 103, 6951−6958.pl
dc.description.referencesDvinskikh, S. V.; Sandström, D. Frequency Offset Refocused PISEMA-type Sequences. J. Magn. Reson. 2005, 175, 163−169.pl
dc.description.referencesAntzutkin, O. N.; Shekar, S. C.; Levitt, M. H. Two-Dimensional Sideband Separation in Magic-Angle-Spinning NMR. J. Magn. Reson., Ser. A 1995, 115, 7−19.pl
dc.description.referencesTopSpin, v. 3.0; Bruker BioSpin GmbH, Karlsruhe, Germany.pl
dc.description.referencesMao, K.; Wiench, J. W.; Lin, V. S.-Y.; Pruski, M. Indirectly Detected Through-Bond Chemical Shift Correlation NMR Spectroscopy in Solids under Fast MAS: Studies of Organic−Inorganic Hybrid Materials. J. Magn. Reson. 2009, 196, 92−95.pl
dc.description.referencesIshii, Y.; Tycko, R. Sensitivity Enhancement in Solid State 15N NMR by Indirect Detection with High-Speed Magic Angle Spinning. J. Magn. Reson. 2000, 142, 199−204.pl
dc.description.referencesClark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Kristallogr. - Cryst. Mater. 2005, 220, 567−570.pl
dc.description.referencesSegall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. J. Phys.: Condens. Matter 2002, 14, 2717−2744.pl
dc.description.referencesPerdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.pl
dc.description.referencesVanderbilt, D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B: Condens. Matter Mater. Phys. 1990, 41, 7892−7895.pl
dc.description.referencesMonkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188−5192.pl
dc.description.referencesNocedal, J.; Wright, S. J. Numerical Optimization; Springer-Verlag: New York, 2006; second ed.pl
dc.description.referencesMacrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P. A. Mercury CSD 2.0 − New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Crystallogr. 2008, 41, 466−470.pl
dc.description.referencesDudek, M. K.; Kazmierski, S.; Kostrzewa, M.; Potrzebowski, M. J. Solid-State NMR Studies of Molecular Crystals. Annu. Rep. NMR Spectrosc. 2018, 95, 1−81.pl
dc.description.referencesJeziorna, A.; Kazmierski, S.; Paluch, P.; Skorupska, E.; Potrzebowski, M. J. Recent Progress in the Solid-State NMR Studies of Short Peptides: Techniques, Structure and Dynamics. Annu. Rep. NMR Spectrosc. 2014, 83, 67−143.pl
dc.description.referencesBielecki, A.; Kolbert, A. C.; Levitt, M. H. Frequency-Switched Pulse Sequences: Homonuclear Decoupling and Dilute Spin NMR in Solids. Chem. Phys. Lett. 1989, 155, 341−346.pl
dc.description.referencesVasa, S. K.; Rovó, P.; Linser, R. Protons as Versatile Reporters in Solid-State NMR Spectroscopy. Acc. Chem. Res. 2018, 51, 1386−1395.pl
dc.description.referencesPawlak, T.; Paluch, P.; Trzeciak-Karlikowska, K.; Jeziorna, A.; Potrzebowski, M. J. Study of the Thermal Processes in Molecular Crystals of Peptides by Means of NMR Crystallography. CrystEng-Comm 2013, 15, 8680−8692.pl
dc.description.referencesDudek, M. K.; Pawlak, T.; Paluch, P.; Jeziorna, A.; Potrzebowski, M. J. A Multi-Technique Experimental and Computational Approach to Study the Dehydration Processes in the Crystals of Endomorphin Opioid Peptide Derivative. Cryst. Growth Des. 2016, 16, 5312−5322.pl
dc.description.referencesBrown, S. P. Applications of High-Resolution 1H Solid-State NMR. Solid State Nucl. Magn. Reson. 2012, 41, 1−27.pl
dc.description.referencesZhang, R.; Mroue, K. H.; Ramamoorthy, A. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy. Acc. Chem. Res. 2017, 50, 1105−1113.pl
dc.description.referencesRodríguez-Molina, B.; Peréz-Estrada, S.; Garcia-Garibay, M. A. Amphidynamic Crystals of a Steroidal Bicyclo[2.2.2]octane Rotor: A High Symmetry Group That Rotates Faster than Smaller Methyl and Methoxy Groups. J. Am. Chem. Soc. 2013, 135, 10388−10395.pl
dc.description.referencesCzajkowska-Szczykowska, D.; Rodrıǵ uez-Molina, B.; Magaña-Vergara, N. E.; Santillan, R.; Morzycki, J. W.; Garcia-Garibay, M. A. Macrocyclic Molecular Rotors with Bridged Steroidal Frameworks. J. Org. Chem. 2012, 77, 9970−9978.pl
dc.description.referencesKrushelnitsky, A.; Reichert, D. Solid-state NMR and protein dynamics. Prog. Nucl. Magn. Reson. Spectrosc. 2005, 47, 1−25.pl
dc.description.referencesSchanda, P.; Ernst, M. Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules. Prog. Nucl. Magn. Reson. Spectrosc. 2016, 96, 1−46.pl
dc.description.referencesReichert, D.; Saalwachter, K. Dipolar Recoupling: Molecular-level Mobility in NMR Chystallography; Harris, R. K., Wasylishen, R. E., Duer, M. J., Eds.; Wiley and Sons Ltd.: UK, 2009.pl
dc.description.referencesDvinskikh, S. V.; Zimmermann, H.; Maliniak, A.; Sandström, D. Heteronuclear Dipolar Recoupling in Liquid Crystals and Solids by PISEMA-type Pulse Sequences. J. Magn. Reson. 2003, 164, 165−170.pl
dc.description.referencesAlderman, D. W.; McGeorge, G.; Hu, J. Z.; Pugmire, R. J.; Grant, D. M. A sensitive, high resolution magic angle turning experiment for measuring chemical shift tensor principal values. Mol. Phys. 1998, 95, 1113−1126.pl
dc.description.referencesFrydman, L.; Chingas, G. C.; Lee, Y. K.; Grandinetti, P. J.; Eastman, M. A.; Barrall, G. A.; Pines, A. Variable-angle correlation spectroscopy in solid-state nuclear magnetic resonance. J. Chem. Phys. 1992, 97, 4800−4808.pl
dc.description.referencesAntzutkin, O. N.; Shekar, S. C.; Levitt, M. H. J. Twodimensional sideband separation in magic-angle-spinning NMR. J. Magn. Reson., Ser. A 1995, 115, 7−19.pl
dc.description.referencesPawlak, T.; Trzeciak-Karlikowska, K.; Czernek, J.; Ciesielski, W.; Potrzebowski, M. J. Computed and Experimental Chemical Shift Parameters for Rigid and Flexible YAF Peptides in the Solid State. J. Phys. Chem. B 2012, 116, 1974−1983.pl
dc.description.referencesAlkan, F.; Holmes, S. T.; Dybowski, C. Role of Exact Exchange and Relativistic Approximations in Calculating 19F Magnetic Shielding in Solids Using a Cluster Ansatz. J. Chem. Theory Comput. 2017, 13, 4741−4752.pl
dc.description.referencesPaluch, P.; Pawlak, T.; Amoureux, J.-P.; Potrzebowski, M. J. Simple and Accurate Determination of X−H Distances under Ultra-Fast MAS NMR. J. Magn. Reson. 2013, 233, 56−63.pl
dc.description.referencesPaluch, P.; Pawlak, T.; Jeziorna, A.; Trébosc, J.; Hou, G.; Vega, A. J.; Amoureux, J.-P.; Dracinsky, M.; Polenova, T.; Potrzebowski, M. J. Analysis of Local Molecular Motions of Aromatic Sidechains in Proteins by 2D and 3D Fast MAS NMR Spectroscopy and Quantum Mechanical Calculations. Phys. Chem. Chem. Phys. 2015, 17, 28789−28801.pl
dc.identifier.eissn1528-7505-
dc.description.volume20pl
dc.description.issue4pl
dc.description.firstpage2202pl
dc.description.lastpage2216pl
dc.identifier.citation2Crystal Growth & Designpl
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-7297-7422-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-9049-5670-
dc.identifier.orcid0000-0002-8843-9709-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-5672-0638-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons