REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/18168
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorWawrusiewicz-Kurylonek, Natalia-
dc.contributor.authorGościk, Joanna-
dc.contributor.authorChorąży, Monika-
dc.contributor.authorSiewko, Katarzyna-
dc.contributor.authorPosmyk, Renata-
dc.contributor.authorZajkowska, Agata-
dc.contributor.authorCitko, Anna-
dc.contributor.authorMaciulewski, Rafał-
dc.contributor.authorSzelachowska, Małgorzata-
dc.contributor.authorMyśliwiec, Janusz-
dc.contributor.authorJastrzębska, Izabella-
dc.contributor.authorKułakowska, Alina-
dc.contributor.authorKochanowicz, Jan-
dc.contributor.authorKrętowski, Adam Jacek-
dc.date.accessioned2025-04-04T07:39:28Z-
dc.date.available2025-04-04T07:39:28Z-
dc.date.issued2020-
dc.identifier.citationImmunobiology, Volume 225, Issue 1, 2020, 151864pl
dc.identifier.urihttp://hdl.handle.net/11320/18168-
dc.description.abstractPurpose: Autoimmune diseases are a group of complex diseases localized in multiple organ systems, with a wide spectrum of symptoms and still unclear causes. The aim of the present study was to analyse a possible association of three autoimmune disabilities - Multiple sclerosis (MS), LADA diabetes and Graves’ disease (GD) with single nucleotide polymorphism (SNP; rs1990760) in the IF IH1 gene (also known as a melanoma differentiation-associated protein 5 - MDA5) within the Polish population. An additional goal was also to look for a correlation between this polymorphism and different clinical patient-related factors. Materials and methods: The study population consisted of four groups of 944 unrelated Polish origin Caucasian patients – 324 with GD, 171 with MS, 49 with LADA diabetes and 400 healthy subjects as a control group. The SNP analysis was performed using the allelic discrimination technique. Results & Conclusions: There were significant associations of risk T allel of the analyzed polymorphism with all studied autoimmune diseases (GDeOR = 1.34, p = 7.02e-03; MSeOR = 1.36, p = 2.17e-02; LADA – OR = 3.36, p = 8.73e-07). We also found that the frequency of CT and TT genotypes of the rs1990760 IFIH1 gene only in females (with LADA, GD, MS) was significantly higher than those in the female control group (47%, 41% vs 44%, 34%; p = 1.32e-03, p = 4.39e-04; OR = 2.08, 95%CI: (1.33–3.28), OR = 2.29, 95% CI: (1.44–3.65) respectively). Our research has shown significant differences regarding some clinical features (BMI, TRAb, TSH, HbA1C, anti-GAD antibodies) and age at the beginning of the studied autoimmune disabilities. This study showed an association of rs1990760 polymorphism in the IFIH1 gene in the development of GD, LADA diabetes and MS within the Polish population. To our knowledge, this is the first study to investigate the relationship between IFIH1 polymorphisms and the risk of the development of MS and LADA in Poland.pl
dc.language.isoenpl
dc.publisherElsevierpl
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internationalpl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/pl
dc.subjectIFIH1 genepl
dc.subjectGraves’ diseasepl
dc.subjectMultiple sclerosispl
dc.subjectLADA diabetespl
dc.subjectPolymorphismpl
dc.titleThe interferon-induced helicase C domain-containing protein 1 gene variant (rs1990760) as an autoimmune-based pathology susceptibility factorpl
dc.typeArticlepl
dc.rights.holder© 2019 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND licensepl
dc.identifier.doi10.1016/j.imbio.2019.10.013-
dc.description.EmailNatalia Wawrusiewicz-Kurylonek: natalia.wawrusiewicz-kurylonek@umb.edu.plpl
dc.description.AffiliationNatalia Wawrusiewicz-Kurylonek - Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationJoanna Gościk - Faculty of Computer Science Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Polandpl
dc.description.AffiliationMonika Chorąży - Department of Neurology, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationKatarzyna Siewko - Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationRenata Posmyk - Department of Clinical Genetics, Medical University of Bialystok, Waszyngtona 14, 15-089, Bialystok, Polandpl
dc.description.AffiliationAgata Zajkowska - Department of Neurology, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationAnna Citko - Clinical Research Centre, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationRafał Maciulewski - Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationMałgorzata Szelachowska - Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationJanusz Myśliwiec - Department of Nuclear Medicine, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationIzabella Jastrzębska - Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K, 15-245, Białystok, Polandpl
dc.description.AffiliationAlina Kułakowska - Department of Neurology, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationJan Kochanowicz - Department of Neurology, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.AffiliationAdam Jacek Krętowski - Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Poland; Clinical Research Centre, Medical University of Bialystok, Sklodowska – Curie 24A, 15-276, Bialystok, Polandpl
dc.description.referencesKang, D., et al., 2004. Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon responsive apoptosis-inducing gene. Oncogene 23 1789–800.pl
dc.description.referencesKang, D., et al., 2002. mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc. Natl. Acad. Sci. U.S.A. 99 637–42.pl
dc.description.referencesKato, H., et al., 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441 101–5.pl
dc.description.referencesGorman, J.A., et al., 2017. The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nat. Immunol. 18, 744–752.pl
dc.description.referencesRuggeri, R.M., Giuffrida, G., Campennì, A., 2018. Autoimmune endocrine diseases. Minerva Endocrinol. 43 (3), 305–322.pl
dc.description.referencesIncorvaia, E., Sicouri, L., Petersen-Mahrt, S.K., Schmitz, K.M., 2013. Hormones and AID: balancing immunity and autoimmunity. Autoimmunity 46, 128–137.pl
dc.description.referencesCardenas-Roldan, J., Rojas-Villarraga, A., Anaya, J., 2013. How do autoimmune diseases cluster in families? A systematic review and meta-analysis. BMC Med. 73.pl
dc.description.referencesParkkola, A., Laine, A.P., Karhunen, M., Härkönen, T., Ryhänen, S.J., Ilonen, J., Knip, M., 2017. Finnish Pediatric Diabetes Register. HLA and non-HLA genes and familial predisposition to autoimmune diseases in families with a child affected by type 1 diabetes. PLoS One 12 (11). https://doi.org/10.1371/journal.pone.0188402. eCollection 2017. Nov28pl
dc.description.referencesBogdanos, D.P., Smyk, D.S., Rigopoulou, E.I., Mytilinaiou, M.G., Heneghan, M.A., Selmi, C., Gershwin, M.E., 2012. Twin studies in autoimmune disease: genetics,gender and environment. J. Autoimmun. 38 (2–3), J156–69.pl
dc.description.referencesTomer, Y., Huber, A., 2009. The etiology of autoimmune thyroid disease: a story of genes and environment. J. Autoimmun. 32 (3-4) 231-9.pl
dc.description.referencesSawcer, S., Franklin, R.J., Ban, M., 2014. Multiple sclerosis genetics. Lancet Neurol. 13, 700–709.pl
dc.description.referencesFujinami, R.S., Herrath, M.G., Christen, U., Whitton, J.L., 2006. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin. Microbiol. Rev. 19, 80–94.pl
dc.description.referencesSelin, L.K., et al., 2011. Heterologous immunity: immunopathology, autoimmunity and protection during Vidal infections. Autoimmunity 44, 328–347.pl
dc.description.referencesVan Eyck, L., et al., 2015. Brief report: IFIH1 mutation causes systemic lupus erythematosus with selective IgA deficiency. Arthritis Rheumatol. 67, 1592–1597.pl
dc.description.referencesEnevold, C., et al., 2009a. Multiple sclerosis and polymorphisms of innate pattern recognition receptors TLR1-10, NOD1-2, DDX58, and IFIH1. J. Neuroimmunol. 212, 125–131.pl
dc.description.referencesSmyth, D.J., et al., 2006. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 38 617–9.pl
dc.description.referencesSutherland, A., et al., 2007. Genomic polymorphism at the interferon induced helicase (IFIH1) locus contributes to Graves’ disease susceptibility. J. Clin. Endocrinol. Metab. 92, 3338–3341.pl
dc.description.referencesKisand, K., Uibo, R., 2012. LADA and T1D in Estonian population — two different genetic risk profiles. Gene 497 (2), 285–291.pl
dc.description.referencesPolman, C.H., et al., 2011. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 69 (2), 292–302.pl
dc.description.referencesMatthews, D.R., et al., 1985. Homeostasis model assessment: insulin resistance and betacell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 28, 412–419.pl
dc.description.referencesSluiter, W.J., Erkelens, D.W., Reitsma, W.D., Doorenbos, H., 1976. Glucose tolerance and insulin release, a mathematical approach I. Assay of the beta-cell response after oral glucose loading. Diabetes 25, 241–244.pl
dc.description.referencesMiller, S.A., Dykes, D.D., Polesky, H.F., 1998. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.pl
dc.description.referencesAgresti, A., 1997. A survey of exact inference for contingency tables. Stat. Sci. 7 (1), 131–153.pl
dc.description.referencesLydersen, S., Fagerland, M.W., Laake, P., 2009. Recommended tests for association in 2x2 tables. Stat. Med. 28, 1159–1175.pl
dc.description.referencesChambers, J.M., Freeny, A., Heiberger, R.M., 1992. Analysis of variance; Designed experiments. In: Chambers, J.M., Hastie, T.J. (Eds.), Statistical Models in Seds. Wadsworth & Brooks/Cole, pp. 145–195.pl
dc.description.referencesYates, F., 1934. The analysis of multiple classifications with unequal numbers in the different classes. J. Am. Stat. Assoc. Am. Stat. Assoc. 29 (185), 51–66.pl
dc.description.referencesCore Team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.pl
dc.description.referencesBrix, T.H., Kyvik, K.O., Christensen, K., Hegedus, L., 2001. Evidence for a major role of heredity in Graves’ disease: a population-based study of two Danish twin cohorts. J. Clin. Endocrinol. Metab. 86, 930–934.pl
dc.description.referencesInternational Multiple Sclerosis Genetics Consortium, Beecham, A.H., et al., 2013. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353.pl
dc.description.referencesChu, X., et al., 2011. A genome-wide association study identifies two new risk loci for Graves’ disease. Nat. Genet. 43 (9), 897–901.pl
dc.description.referencesYoneyama, M., et al., 2005. Shared and unique functions of the DExD/H-box helicasesRIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858.pl
dc.description.referencesMeylan, E., Tschopp, J., Karin, M., 2006. Intracellular pattern recognition receptors in the host response. Nature. 442, 39–44.pl
dc.description.referencesPenna-Martinez, M., et al., 2009. The rs1990760 polymorphism within the IFIH1 locus is not associated with Graves’ disease, Hashimoto’s thyroiditis and Addison’s disease. BMC Med. Genet. 4 (10), 126.pl
dc.description.referencesTodd, J.A., et al., 2007. Robust associations of four new chromosome regions from genome wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864.pl
dc.description.referencesQu, H.Q., Marchand, L., Grabs, R., Polychronakos, C., 2008. The association between the IFIH1 locus and type 1 diabetes. Diabetologia. 51, 473–475.pl
dc.description.referencesLiu, S., et al., 2009. IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum. Mol. Genet. 18, 358–365.pl
dc.description.referencesMartinez, A., et al., 2008. IFIH1-GCA-KCNH7 locus: influence on multiple sclerosis risk. Eur. J. Hum. Genet. 16, 861–864.pl
dc.description.referencesKnip, M., et al., 2005. Environ-mental triggers and determinants of type 1 diabetes. Diabetes 54 (Suppl 2), S125–S136.pl
dc.description.referencesDesailloud, R., Hober, D., 2009. Viruses and thyroiditis: an update. Virol. J. 6 (5).pl
dc.description.referencesNejentsev, S., Walker, N., Riches, D., Egholm, M., Todd, J.A., 2009. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389.pl
dc.description.referencesEnevold, C., et al., 2009b. Multiple sclerosis and polymorphisms of innate pattern recognition receptors TLR1-10, NOD1-2, DDX58, and IFIH1. J. Neuroimmunol. 212 (1-2) 125-31.pl
dc.description.referencesRydzewska, M., et al., 2018. Analysis of chosen polymorphisms rs2476601 A/G - PTPN22, rs1990760 C/T - IFIH1, rs179247 A/G - TSHR in pathogenesis of autoimmune thyroid diseases in children. Autoimmunity 4, 1–8.pl
dc.description.referencesChen, H.Y., et al., 2007. The A946T polymorphism in the interferon induced helicase gene does not confer susceptibility to Graves’ disease in Chinese population. Endocrine 32 (2) 143-7.pl
dc.description.referencesDesai, M.K., Brinton, R.D., 2019. Autoimmune disease in women: endocrine transition and risk across the lifespan. Front. Endocrinol. (Lausanne) 10, 265.pl
dc.description.referencesGroop, L., Tuomi, T., Rowley, M., Zimmet, P., Mackay, I.R., 2006. Latent autoimmune diabetes in adults (LADA)–more than a name. Diabetologia. 49 (9) 1996-8.pl
dc.description.referencesHuang, G., et al., 2012. Insulin autoantibody could help to screen latent autoimmune diabetes in adults in phenotypic type 2 diabetes mellitus in Chinese. Acta Diabetol. 49 (5) 327-31.pl
dc.description.referencesJurecka-Lubieniecka, B., et al., 2013. Association between age at diagnosis of graves’ disease and variants in genes involved in immune response. PLoS One 8 (3), e59349.pl
dc.description.referencesPaterson, A.D., Kennedy, J.L., Petronis, A., 1996. Evidence for genetic anticipation in non-Mendelian diseases. Am. J. Hum. Genet. 59 264–8.pl
dc.description.referencesRadstake, T.R., et al., 2001. Genetic anticipation in rheumatoid arthritis in Europe. European consortium on rheumatoid arthritis families. J. Rheumatol. 28 962–7.pl
dc.description.referencesCocco, E., et al., 2004. Anticipation of age at onset in multiple sclerosis: a Sardinian cohort study. Neurology. 62 1794–8.pl
dc.identifier.eissn1878-3279-
dc.description.volume225pl
dc.description.issue1pl
dc.identifier.citation2Immunobiologypl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
N_Wawrusiewicz_Kurylonek_J_Goscik_I_Jastrzebska_at_al_The_interferon_induced_helicase_C.pdf791,27 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons