REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/18167
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorOlszewska, Karolina-
dc.contributor.authorJastrzębska, Izabella-
dc.contributor.authorŁapiński, Andrzej-
dc.contributor.authorGórecki, Marcin-
dc.contributor.authorSantillan, Rosa-
dc.contributor.authorFarfán, Norberto-
dc.contributor.authorRunka, Tomasz-
dc.date.accessioned2025-04-04T07:29:54Z-
dc.date.available2025-04-04T07:29:54Z-
dc.date.issued2020-
dc.identifier.citationThe Journal of Physical Chemistry B, Vol. 124, 2020, p. 9625-9635pl
dc.identifier.issn1520-6106-
dc.identifier.urihttp://hdl.handle.net/11320/18167-
dc.description.abstractProperly designed molecular rotors with sizable stators and a fast-moving rotator could provide efficient building blocks for amphidynamic crystals. Herein, we report the synthesis of steroidal compounds 1, 2, and 3 and their deuterated analogues 1D, 2D, and 3D envisioned to work as molecular rotors. The obtained compounds were characterized by attenuated total reflection-infrared, Raman, and circular dichroism (CD) spectroscopy measurements. The interpretation of spectra was supported by theoretical calculations using density functional theory methods. The analysis of the most characteristic bands confirmed different molecular dynamics of the rotors investigated. Angle-dependent polarized Raman spectra showed the crystallinity of some samples. Electronic CD (ECD) spectra of compounds 1−3 and their relevant deuterated analogues 1D−3D are identical. The increase of the band intensity with lowering the temperature shows that the equilibrium is shifted to the thermodynamically most stable conformer. ECD spectra simulated at the TDFFT level of theory for compound 3 were compared with experimental results. It was proved that conformer 3a, with a torsion angle of +50°, exhibits the best agreement with the experimental results. Simulated vibrational CD and IR spectra for conformer 3a and its deuterated analogue 3Da also display good agreement with experimental results. In light of our comprehensive investigations, we evidenced that steroidal compounds 1, 2, and 3 can work as molecular rotors.pl
dc.description.sponsorshipThis work was partially supported by the Ministry of Science and Higher Education. M.G. thanks the Wroclaw Centre for Networking and Supercomputing (WCSS) for the computational support. N.F. and R.S. acknowledge support from PAPIIT (IN222819), DGAPA and CONACyT.pl
dc.language.isoenpl
dc.publisherAmerican Chemical Societypl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleSteroidal Molecular Rotors with 1,4-Diethynylphenylene Rotators: Experimental and Theoretical Investigations Toward Seeking Efficient Propertiespl
dc.typeArticlepl
dc.rights.holderThis is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.pl
dc.rights.holder© 2020 American Chemical Society-
dc.identifier.doi10.1021/acs.jpcb.0c06464-
dc.description.EmailIzabella Jastrzębska: i.jastrzebska@uwb.edu.plpl
dc.description.EmailMarcin Górecki: marcin.gorecki@icho.edu.plpl
dc.description.EmailTomasz Runka: tomasz.runka@put.poznanpl
dc.description.AffiliationIzabella Jastrzębska − Faculty of Chemistry, University of Białystok, 15-254 Białystok, Polandpl
dc.description.AffiliationMarcin Górecki − Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Polandpl
dc.description.AffiliationTomasz Runka − Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznań, Poland;pl
dc.description.AffiliationKarolina Olszewska − Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, 60-965 Poznań, Polandpl
dc.description.AffiliationAndrzej Łapiński − Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Polandpl
dc.description.AffiliationRosa Santillan − Departamento de Química, Centro de Investigación y de Estudios Avanzados del IPN, México D.F. 07000, Mexicopl
dc.description.AffiliationNorberto Farfán − Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autoń oma de México, 04510 Ciudad de México D.F., Mexicopl
dc.description.referencesSchliwa, M.; Woehlke, G. Molecular motors. Nature 2003, 422, 759−765.pl
dc.description.referencesBucci, E. M.; Bucci, O. M.; Sorrentino, R. Nanotechnology and Life: An Engineer’s Perspective [Point of View]. Proc. IEEE 2014, 102, 930−935.pl
dc.description.referencesLiu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop, B. H.; Tseng, H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.; Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C.-M.; Stoddart, J. F. Linear Artificial Molecular Muscles. J. Am. Chem. Soc. 2005, 127, 9745−9759.pl
dc.description.referencesEelkema, R.; Pollard, M. M.; Vicario, J.; Katsonis, N.; Ramon, B. S.; Bastiaansen, C. W. M.; Broer, D. J.; Feringa, B. L. Nanomotor rotates microscale objects. Nature 2006, 440, 163.pl
dc.description.referencesGarcia-Garibay, M. A. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10771−10776.pl
dc.description.referencesKarlen, S. D.; Garcia-Garibay, M. A. Amphidynamic Crystals: Structural Blueprints for Molecular Machines. In Molecular Machines. Topics in Current Chemistry; Kelly, T. R., Ed.; Springer-Verlag Berlin Heidelberg, 2005; Vol. 262, pp 179−227.pl
dc.description.referencesCzajkowska-Szczykowska, D.; Jastrzebska, I.; Santillan, R.; Morzycki, J. W. The synthesis of disteroidal macrocyclic molecular rotors by an RCM approach. Tetrahedron 2014, 70, 9427−9435.pl
dc.description.referencesCatalano, L.; Naumov, P. Exploiting rotational motion in molecular crystals. CrystEngComm 2018, 20, 5872−5883.pl
dc.description.referencesRunka, T.; Olszewska, K.; Fertsch, P.; Łapiński, A.; Jastrzebska, I.; Santillan, R.; Farfán, N. Vibrational spectroscopic characterization of cyclic and acyclic molecular rotors with 1,4-diethynylphenylene-d4rotators. Spectrochim. Acta, Part A 2018, 192, 393−400.pl
dc.description.referencesMu, X.; Liu, Y.; Liu, S.; Sun, Y.; Lu, N.; Lu, Y.; Li, W.; Zhou, X.; Liu, B.; Li, Z. A cyanine-derived near-infrared molecular rotor for ratiometric imaging of mitochondrial viscosity in cells. Sens. Actuators, B 2019, 298, 126831−126839.pl
dc.description.referencesAguilar-Granda, A.; Pérez-Estrada, S.; Sánchez-González, E.; Álvarez, J. R.; Rodríguez-Hernández, J.; Rodríguez, M.; Roa, A. E.; Hernández-Ortega, S.; Ibarra, I. A.; Rodríguez-Molina, B. Transient Porosity in Densely Packed Crystalline Carbazole-(p-Diethynylphenylene)-Carbazole Rotors: CO2 and Acetone Sorption Properties. J. Am. Chem. Soc. 2017, 139, 7549−7557.pl
dc.description.referencesMetrangolo, P.; Carcenac, Y.; Lahtinen, M.; Pilati, T.; Rissanen, K.; Vij, A.; Resnati, G. Nonporous Organic Solids Capable of Dynamically Resolving Mixtures of Diiodoperfluoroalkanes. Science 2009, 323, 1461−1464.pl
dc.description.referencesAguilar-Granda, A.; Pérez-Estrada, S.; Roa, A. E.; Rodríguez-Hernández, J.; Hernández-Ortega, S.; Rodriguez, M.; Rodríguez-Molina, B. Synthesis of a Carbazole-[pi]-carbazole Molecular Rotor with Fast Solid State Intramolecular Dynamics and Crystallization-Induced Emission. Cryst. Growth Des. 2016, 16, 3435−3442.pl
dc.description.referencesZhang, W.; Ye, H.-Y.; Graf, R.; Spiess, H. W.; Yao, Y.-F.; Zhu, R.-Q.; Xiong, R.-G. Tunable and Switchable Dielectric Constant in an Amphidynamic Crystal. J. Am. Chem. Soc. 2013, 135, 5230−5233.pl
dc.description.referencesKobr, L.; Zhao, K.; Shen, Y.; Shoemaker, R. K.; Rogers, C. T.; Michl, J. Tris-o-henylenedioxycyclotriphosphazene (TPP) Inclusion Compounds Containing a Dipolar Molecular Rotor. Cryst. Growth Des. 2014, 14, 559−568.pl
dc.description.referencesRodríguez-Molina, B.; Pozos, A.; Cruz, R.; Romero, M.; Flores, B.; Farfán, N.; Santillan, R.; Garcia-Garibay, M. A. Synthesis and solid state characterization of molecular rotors with steroidal stators: ethisterone and norethisterone. Org. Biomol. Chem. 2010, 8, 2993−3000.pl
dc.description.referencesRamirez-Montes, P. I.; Ochoa, M. E.; Santillan, R.; Ramírez, D. J.; Farfán, N. Steroidal Wheel-and-Axle Host Type Molecules: Insights from Awkward Shape, Conformation, Z′ > 1 and Packing. Cryst. Growth Des. 2014, 14, 4681−4690.pl
dc.description.referencesFrisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, J. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Hona, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S. A.; Daniels, D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision B.03; Gaussian, Inc.: Pittsburgh PA, 2003.pl
dc.description.referencesFrisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al.Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016.pl
dc.description.referencesBecke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648−5652.pl
dc.description.referencesFrisch, M. J.; Pople, J. A.; Binkley, J. S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265−3269.pl
dc.description.referencesMerrick, J. P.; Moran, D.; Radom, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J. Phys. Chem. A 2007, 111, 11683−11700.pl
dc.description.referencesScott, A. P.; Radom, L. Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem. 1996, 100, 16502−16513.pl
dc.description.referencesSun, R.; Yao, J.; Li, S.; Gu, R. Raman spectroscopic and density functional theory studies on a benzothiazole-2-thione derivative. Vib. Spectrosc. 2008, 47, 38−43.pl
dc.description.referencesDennington, R.; Keith, T.; Millam, J. GaussView, version 5; Semichem Inc.: Shawnee Mission, KS, 2009.pl
dc.description.referencesJastrzębska, I.; Górecki, M.; Frelek, J.; Santillan, R.; Siergiejczyk, L.; Morzycki, J. W. Photoinduced Isomerization of 23-Oxosapogenins: Conformational Analysis and Spectroscopic Characterization of 22-Isosapogenins. J. Org. Chem. 2012, 77, 11257−11269.pl
dc.description.referencesFrelek, J.; Butkiewicz, A.; Górecki, M.; Wojcieszczyk, R. K.; Luboradzki, R.; Kwit, M.; Rode, M. F.; Szczepek, W. J. Structure − chiroptical properties relationship of cisoidenones with an α-methylenecyclopentanone unit. RSC Adv. 2014, 4, 43977−43993.pl
dc.description.referencesFrelek, J.; Górecki, M.; Dziedzic, A.; Jabłońska, E.; Kamieński, B.; Wojcieszczyk, R. K.; Luboradzki, R.; Szczepek, W. J. Comprehensive spectroscopic characterization of finasteride polymorphic forms. Does the form X exist? J. Pharm. Sci. 2015, 104, 1650−1657.pl
dc.description.referencesGórecki, M.; Dziedzic, A.; Luboradzki, R.; Ostaszewska, A.; Frelek, J.; Szczepek, W. J. Synthesis and comprehensive structural and physicochemical characterization of dutasteride hydrochloride hydrate solvates. Steroids 2017, 124, 72−80.pl
dc.description.referencesBruhn, T.; Schaumlöffel, A.; Hemberger, Y.; Pescitelli, G. SpecDis, version 1.71: Berlin, Germany, 2017. Available online: https://specdis-software.jimdo.com.pl
dc.description.referencesWoznica, M.; Kowalska, P.; Lysek, R.; Masnyk, M.; Górecki, M.; Kwit, M.; Furche, F.; Frelek, J. Stereochemical Assignment of β- lactam Antibiotics and their Analogues by Electronic Circular Dichroism Spectroscopy. Curr. Org. Chem. 2010, 14, 1022−1036.pl
dc.description.referencesGrolik, J.; Dudek, Ł.; Eilmes, J.; Eilmes, A.; Górecki, M.; Frelek, J.; Heinrich, B.; Donnio, B. New chiral discotics with helical organization of the mesophaseliquid crystalline derivatives of dibenzotetraaza[14]annulene. Tetrahedron 2012, 68, 3875−3884.pl
dc.description.referencesKołodziejska, R.; Górecki, M.; Frelek, J.; Dramiński, M. Enantioselective enzymatic desymmetrization of the prochiral pyrimidine acyclonucleoside. Tetrahedron: Asymmetry 2012, 23, 683−689.pl
dc.description.referencesGórecki, M.; Karczmarska-Wódzka, A.; Kołodziejska, R.; Dramiński, M.; Frelek, J. Determination of the Stereostructure of Pyrimidine Nucleoside Derivatives with a Combination of Various Chiroptical Methods. Eur. J. Org. Chem. 2014, 43, 5204−5213.pl
dc.description.referencesJeziorna, A.; Stopczyk, K.; Skorupska, E.; Luberda-Durnas, K.; Oszajca, M.; Lasocha, W.; Górecki, M.; Frelek, J.; Potrzebowski, M. J. Cyclic Dipeptides as Building Units of Nano- and Microdevices: Synthesis, Properties, and Structural Studies. Cryst. Growth Des. 2015, 15, 5138−5148.pl
dc.description.referencesRehman, N. U.; Hussain, H.; Al-Shidhani, S.; Avula, S. K.; Abbas, G.; Anwar, M. U.; Górecki, M.; Pescitelli, G.; Al-Harrasi, A. Incensfuran: isolation, X-ray crystal structure and absolute configuration by means of chiroptical studies in solution and solid state. RSC Adv. 2017, 7, 42357−42362.pl
dc.description.referencesGórecki, M.; Carpita, L.; Arrico, L.; Zinna, F.; Di Bari, L. Chiroptical methods in a wide wavelength range for obtaining Ln3+ complexes with circularly polarized luminescence of practical interest. Dalton Trans. 2018, 47, 7166−7177.pl
dc.description.referencesPescitelli, G.; Bruhn, T. Good Computational Practice in the Assignment of Absolute Configurations by TDDFT Calculations of ECD Spectra. Chirality 2016, 28, 466−474.pl
dc.identifier.eissn1520-5207-
dc.description.volume124pl
dc.description.firstpage9625pl
dc.description.lastpage9635pl
dc.identifier.citation2The Journal of Physical Chemistry Bpl
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-7472-3875-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-0965-2676-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons