REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/18160
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorWysocka-Żołopa, Monika-
dc.contributor.authorWojtulewski, Kazimierz-
dc.contributor.authorBasa, Anna-
dc.contributor.authorSatuła, Dariusz M.-
dc.contributor.authorMarkiewicz, Karolina H.-
dc.contributor.authorGrądzka, Emilia-
dc.contributor.authorWinkler, Krzysztof-
dc.date.accessioned2025-03-31T06:39:15Z-
dc.date.available2025-03-31T06:39:15Z-
dc.date.issued2023-
dc.identifier.citationMacromolecular Rapid Communications, Volume 44, Issue 22 (2023), p. 2300387pl
dc.identifier.issn1022-1336-
dc.identifier.urihttp://hdl.handle.net/11320/18160-
dc.description.abstractA composite of iron oxide magnetic nanoparticles and coordination fullerene polymer (C₆₀Pd₃)n is formed by chemical deposition of spherical polymer nanoparticles on iron oxide magnetic nanoparticles in benzene containing C₆₀ and Pd(0) complex. The composition of the composite can be controlled by the amount of magnetite and concentration of polymerization precursors as well as the time of polymerization. The magnetic composite material Fe₃O₄ -𝜸Fe₂O₃ /( C₆₀Pd₃)n is used as a model system to investigate its deposition on a magnetic electrode and its electrochemical properties. The iron oxide magnetic nanoparticles ensure both the magnetic activity of the composite and its nanostructured morphology. Both of these factors are responsible for the enhancement of the electrochemical activity of the polymer phase forming the composite in comparison to the pure polymermaterial deposited on the same magnetic electrode. In the magnetic field of the electrode, the composite undergoes permanent and strong bonding with the surface of the electrode. The nanostructured morphology of the Fe₃O₄ -𝜸Fe₂O₃ /( C₆₀Pd₃)n composite also provides very good capacitive properties.pl
dc.description.sponsorshipThis research was funded by the Polish National Centre of Science, grantnumber UMO-2021/43/B/ST4/03035 to K.W.pl
dc.language.isoenpl
dc.publisherWileypl
dc.subjectcoordination fullerene polymerspl
dc.subjectelectrochemically active compositespl
dc.subjectmagnetic electrodespl
dc.subjectmagnetitespl
dc.subjectnanocompositespl
dc.titleInvestigation of Magnetic Electrodes in Conducting Polymeric Materials: Electrochemical Properties of a Fullerene[C₆₀]-Pd Polymer and Iron Oxide Magnetic Nanocompositepl
dc.typeArticlepl
dc.rights.holder© Wiley-VCH GmbH, Weinheimpl
dc.identifier.doi10.1002/marc.202300387-
dc.description.EmailM. Wysocka-Żołopa: monia@uwb.edu.plpl
dc.description.EmailK. Winkler: winkler@uwb.edu.plpl
dc.description.AffiliationM. Wysocka-Żołopa - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationK. Wojtulewski - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationA. Basa - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationD. M. Satuła - Department of Physics, University of Bialystokpl
dc.description.AffiliationK. H. Markiewicz - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationE. Grądzka - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationK. Winkler - Department of Chemistry, University of Bialystokpl
dc.description.referencesC. Li, M. Iqbal, J. Lin, X. Luo, B. Jiang, V. Malgras, K. C.-W. Wu, J. Kim,Y. Yamauchi, Acc. Chem. Res. 2018, 51, 1764.pl
dc.description.referencesP. Bocchetta, D. Frattini, M. Tagliente, F. Selleri, Curr. Nanosci. 2020,16, 462.pl
dc.description.referencesH.-C. Shin, J. Dong, M. Liu, Adv. Mater. 2003, 15, 1610.pl
dc.description.referencesX. Zhang, K. Wan, P. Subramanian, M. Xu, J. Luo, J. Fransaer, J. Mater.Chem. A 2020, 8, 7569.pl
dc.description.referencesS. Biallozor, A. Kupniewska, Synth. Met. 2005, 155, 443.pl
dc.description.referencesH. Hou, S. Tang, Y. Liu, W. Wang, A. Liang, L. Sun, A. Luo, J. Elec-troanal. Chem. 2022, 904, 115921.pl
dc.description.referencesA. Kaliyaraj Selva Kumar, Y. Zhang, D. Li, R. G. Compton, Electrochem.Commun. 2020, 121, 106867.pl
dc.description.referencesI. Dumitrescu, P. R. Unwin, J. V. Macpherson, Chem. Commun. 2009,6886.pl
dc.description.referencesE. Asadian, M. Ghalkhani, S. Shahrokhian, Sens. Actuators, B 2019,293, 183.pl
dc.description.referencesE. Gradzka, K. Winkler, M. Borowska, M. E. Plonska-Brzezinska, L.Echegoyen, Electrochim. Acta 2013, 96, 274.pl
dc.description.referencesM. Deepa, T. K. Saxena, D. P. Singh, K. N. Sood, S. A. Agnihotry, Elec-trochim. Acta 2006, 51, 1974.pl
dc.description.referencesM. M. Collinson, Acc. Chem. Res. 2007, 40, 777.pl
dc.description.referencesL. Ye, K. Wen, Z. Zhang, F. Yang, Y. Liang, W. Lv, Y. Lin, J. Gu, J. H.Dickerson, W. He, W. He, Adv. Energy Mater. 2016, 6, 1502018.pl
dc.description.referencesL. Cordero-Arias, S. Cabanas-Polo, J. Gilabert, O. M. Goudouri, E.Sanchez, S. Virtanen, A. R. Boccaccini, Adv. Appl. Ceram. 2014, 113,42.pl
dc.description.referencesM. Diba, A. García-Gallastegui, R. N. Klupp Taylor, F. Pishbin, M. P.Ryan, M. S. P. Shaffer, A. R. Boccaccini, Carbon 2014, 67, 656.pl
dc.description.referencesM. Wang, L. D. Duong, J. S. Oh, N. T. Mai, S. Kim, S. Hong, J. D. Nam,ACS Appl. Mater. Interfaces 2014, 6, 1747.pl
dc.description.referencesW. Kutner, P. Pieta, R. Nowakowski, J. W. Sobczak, Z. Kaszkur, A. L.Mccarty, F. D’souza, Chem. Mater. 2005, 17, 5635.pl
dc.description.referencesC. N. Sayre, D. M. Collard, Langmuir 1997, 13, 714.pl
dc.description.referencesM. Mazur, P. Krysinski, B. Palys, J. Electroanal. Chem. 2002, 533, 145.pl
dc.description.referencesE. Ruckenstein, Z. F. Li, Adv. Colloid Interface Sci. 2005, 113, 43.pl
dc.description.referencesD. Zhao, X. Guo, Y. Gao, F. Gao, ACS Appl. Mater. Interfaces 2012, 4, 5583.pl
dc.description.referencesC. Peng, S. Zhang, D. Jewell, G. Z. Chen, Prog. Nat. Sci. 2008, 18, 777.pl
dc.description.referencesJ. Wang, J. Wang, Z. Kong, K. Lv, C. Teng, Y. Zhu, Adv. Mater. 2017, 29, 1703044.pl
dc.description.referencesA. Kumar, H. K. Rathore, D. Sarkar, A. Shukla, Electrochem. Sci. Adv. 2022, 2, e2100187.pl
dc.description.referencesM. A. A. Mohd Abdah, N. H. N. Azman, S. Kulandaivalu, Y. Sulaiman, Mater. Des. 2020, 186, 108199.pl
dc.description.referencesK. R. Reddy, B. C. Sin, K. S. Ryu, J.-C. Kim, H. Chung, Y. Lee, Synth. Met. 2009, 159, 595.pl
dc.description.referencesN. K., C. S. Rout, RSC Adv. 2021, 11, 5659.pl
dc.description.referencesJ. Mürbe, A. Rechtenbach, J. Töpfer, Mater. Chem. Phys. 2008, 110, 426.pl
dc.description.referencesY. Zhang, S. Xu, Y. Luo, S. Pan, H. Ding, G. Li, J. Mater. Chem. 2011, 21, 3664.pl
dc.description.referencesG. Zhao, J.-J. Feng, Q.-L. Zhang, S.-P. Li, H.-Y. Chen, Chem. Mater. 2005, 17, 3154.pl
dc.description.referencesA. Cotar, A. Grumezescu, K. C. Huang, G. Voicu, M. Chifiriue, R. Radulescu, Biointerface Res. Appl. Chem. 2013, 3, 559.pl
dc.description.referencesR. Acharya, K. Parida, Biointerface Res. Appl. Chem. 2020, 10, 5266.pl
dc.description.referencesT. Gu, Y. Zhang, S. A. Khan, T. A. Hatton, Colloid Interface Sci. Commun. 2019, 28, 1.pl
dc.description.referencesM. C. Menard, K. J. Takeuchi, A. C. Marschilok, E. S. Takeuchi, Phys. Chem. Chem. Phys. 2013, 15, 18539.pl
dc.description.referencesS. D. A. Zaidi, C. Wang, B. György, C. Sun, H. Yuan, L. Tian, J. Chen, J. Colloid Interface Sci. 2020, 569, 164.pl
dc.description.referencesA. Cotar, A. Grumezescu, K. C. Huang, G. Voicu, M. Chifiriuc, R. Radulescu, Biointerface Res. Appl. Chem. 2013, 3, 559.pl
dc.description.referencesT. Radu, A. Petran, D. Olteanu, I. Baldea, M. Potara, R. Turcu, Appl. Surf. Sci. 2020, 501, 144267.pl
dc.description.referencesL. Y. Novoselova, Appl. Surf. Sci. 2021, 539, 148275.pl
dc.description.referencesJ. Winsett, A. Moilanen, K. Paudel, S. Kamali, K. Ding, W. Cribb, D. Seifu, S. Neupane, SN Appl. Sci. 2019, 1, 1636.pl
dc.description.referencesI. S. Unver, Z. Durmus, IEEE Trans. Magn. 2017, 53, 2001708.pl
dc.description.referencesM. L. M. Elizalde, C. Acha, M. S. Moreno, P. S. Antonel, J. Mater. Chem. C 2022, 10, 18264.pl
dc.description.referencesM. Kryszewski, J. K. Jeszka, Synth. Met. 1998, 94, 99.pl
dc.description.referencesK. Minnici, Y. H. Kwon, L. M. Housel, G. D. Renderos, J. F. Ponder, C. Buckley, J. R. Reynolds, K. J. Takeuchi, E. S. Takeuchi, A. C. Marschilok, E. Reichmanis, ACS Appl. Energy Mater. 2019, 2, 7584.pl
dc.description.referencesJ. H. Kim, F. F. Fang, H. J. Choi, Y. Seo, Mater. Lett. 2008, 62, 2897.pl
dc.description.referencesB. Belaabed, J. L. Wojkiewicz, S. Lamouri, N. El Kamchi, T. Lasri, J. Alloys Compd. 2012, 527, 137.pl
dc.description.referencesG. Bencsik, C. Janáky, B. Endrodi, C. Visy, Electrochim. Acta 2012, 73, 53.pl
dc.description.referencesC. Janáky, B. Endrodi, O. Berkesi, C. Visy, J. Phys. Chem. C 2010, 114, 19338.pl
dc.description.referencesS. P. Pawar, G. Melo, U. Sundararaj, Compos. Sci. Technol. 2019, 183, 107802.pl
dc.description.referencesV. D. Nithya, N. Sabari Arul, J. Mater. Chem. A 2016, 4, 10767.pl
dc.description.referencesX. Zhao, C. Johnston, A. Crossley, P. S. Grant, J. Mater. Chem. 2010, 20, 7637.pl
dc.description.referencesF. Xu, L. Ma, Q. Huo, M. Gan, J. Tang, J. Magn. Magn. Mater. 2015, 374, 311.pl
dc.description.referencesA. C. V. De Araújo, R. J. De Oliveira, S. Alves Júnior, A. R. Rodrigues, F. L. A. Machado, F. A. O. Cabral, W. M. De Azevedo, Synth. Met. 2010, 160, 685.pl
dc.description.referencesB. E. Jaramillo-Tabares, F. J. Isaza, S. I. C. D. Torresi, Mater. Chem. Phys. 2012, 132, 529.pl
dc.description.referencesD. Donescu, R. C. Fierascu, M. Ghiurea, D. Manaila-Maximean, C. A. Nicolae, R. Somoghi, C. I. Spataru, N. Stanica, V. Raditoiu, E. Vasile, Appl. Surf. Sci. 2017, 414, 8.pl
dc.description.referencesM. D. Butterworth, S. A. Bell, S. P. Armes, A. W. Simpson, J. Colloid Interface Sci. 1996, 183, 91.pl
dc.description.referencesD. E. Park, H. S. Chae, H. J. Choi, A. Maity, J. Mater. Chem. C 2015, 3, 3150.pl
dc.description.referencesK.-M. Mangold, J. Schuster, C. Weidlich, Electrochim. Acta 2011, 56, 3616.pl
dc.description.referencesS.-J. Yen, E.-C. Chen, R.-K. Chiang, T.-M. Wu, J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 1291.pl
dc.description.referencesB. Singh, R.-A. Doong, D. S. Chauhan, A. K. Dubey, Anshumali, Mater. Chem. Phys. 2018, 205, 462.pl
dc.description.referencesF. Entezari Juybari, A. Kamran-Pirzaman, M. Ghorbani, Inorg. NanoMet. Chem. 2017, 47, 121.pl
dc.description.referencesW. Ceunen, A. Van Oosten, R. Vleugels, J. De Winter, P. Gerbaux, Z. Li, S. De Feyter, T. Verbiest, G. Koeckelberghs, Polym. Chem. 2018, 9, 3029.pl
dc.description.referencesR. C. Haddon, Philos. Trans. R. Soc., A. 1993, 343, 53.pl
dc.description.referencesQ. Xie, E. Perez-Cordero, L. Echegoyen, J. Am. Chem. Soc. 1992, 114, 3978.pl
dc.description.referencesC. A. Reed, R. D. Bolskar, Chem. Rev. 2000, 100, 1075.pl
dc.description.referencesF. Giacalone, N. Martín, Chem. Rev. 2006, 106, 5136.pl
dc.description.referencesF. Giacalone, N. Martín, Adv. Mater. 2010, 22, 4220.pl
dc.description.referencesC. Bruno, M. Marcaccio, D. Paolucci, C. Castellarin-Cudia, A. Goldoni, A. V. Streletskii, T. Drewello, S. Barison, A. Venturini, F. Zerbetto, F. Paolucci, J. Am. Chem. Soc. 2008, 130, 3788.pl
dc.description.referencesK. Winkler, A. L. Balch, C. R. Chimie 2006, 9, 928.pl
dc.description.referencesK. Winkler, A. L. Balch, W. Kutner, J. Solid State Electrochem. 2006, 10, 761.pl
dc.description.referencesJ. R. Winkler, H. B. Gray, Chem. Rev. 2016, 116, 8313.pl
dc.description.referencesE. Gradzka, M. Wysocka-Zolopa, K. Winkler, Adv. Energy Mater. 2020, 10, 2001443.pl
dc.description.referencesK. Winkler, A. L. Balch, Coord. Chem. Rev. 2021, 438, 213623.pl
dc.description.referencesH. Nagashima, A. Nakaoka, Y. Saito, M. Kato, T. Kawanishi, K. Itoh, J. Chem. Soc., Chem. Commun. 1992, 377.pl
dc.description.referencesA. L. Balch, D. A. Costa, K. Winkler, J. Am. Chem. Soc. 1998, 120, 9614.pl
dc.description.referencesK. Winkler, K. Noworyta, W. Kutner, A. L. Balch, J. Electrochem. Soc. 2000, 147, 2597.pl
dc.description.referencesE. Brancewicz, E. Gradzka, A. Basa, K. Winkler, Electrochim. Acta 2014, 128, 91.pl
dc.description.referencesK. Winkler, A. De Bettencourt-Dias, A. L. Balch, Chem. Mater. 2000, 12, 1386.pl
dc.description.referencesK. Winkler, A. De Bettencourt-Dias, A. L. Balch, Chem. Mater. 1999, 11, 2265.pl
dc.description.referencesK. Winkler, E. Grodzka, F. D’souza, A. L. Balch, J. Electrochem. Soc. 2007, 154, K1.pl
dc.description.referencesE. Brancewicz, E. Gradzka, K. Winkler, J. Solid State Electrochem. 2013, 17, 1233.pl
dc.description.referencesE. Gradzka, M. Wysocka-Zolopa, K. Winkler, J. Phys. Chem. C 2014, 118, 14061.pl
dc.description.referencesJ. Goclon, K. Winkler, J. T. Margraf, RSC Adv. 2017, 7, 2202.pl
dc.description.referencesE. Grodzka, P. Pieta, P. Dluzewski, W. Kutner, K. Winkler, Electrochim. Acta 2009, 54, 5621.pl
dc.description.referencesP. Pieta, E. Grodzka, K. Winkler, G. M. Venukadasula, F. D’souza, W. Kutner, Phys. Status Solidi B 2008, 245, 2292.pl
dc.description.referencesP. Pieta, E. Grodzka, K. Winkler, M. Warczak, A. Sadkowski, G. Z. Zukowska, G. M. Venukadasula, F. D’souza, W. Kutner, J. Phys. Chem. B 2009, 113, 6682.pl
dc.description.referencesE. Gradzka, E. Brancewicz, K. Winkler, ECS J. Solid State Sci. Technol. 2013, 2, M3151.pl
dc.description.referencesA. V. Talyzin, A. Dzwilewski, M. Pudelko, Carbon 2007, 45, 2564.pl
dc.description.referencesR. M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed., Wiley-VCH, Weinheim, Germany, 2003.pl
dc.description.referencesM. R. Zachariah, M. I. Aquino, R. D. Shull, E. B. Steel, Nanostruct. Mater. 1995, 5, 383.pl
dc.description.referencesÖ. Helgason, H. K. Rasmussen, S. Mørup, J. Magn. Magn. Mater. 2006, 302, 413.pl
dc.description.referencesE. Tronc, D. Fiorani, M. Noguès, A. M. Testa, F. Lucari, F. D’orazio, J. M. Grenèche, W. Wernsdorfer, N. Galvez, C. Chanéac, D. Mailly, J. P. Jolivet, J. Magn. Magn. Mater. 2003, 262, 6.pl
dc.description.referencesL. Nalbandian, E. Patrikiadou, V. Zaspalis, A. Patrikidou, E. Hatzidaki, C. N. Papandreou, Curr. Nanosci. 2016, 12, 455.pl
dc.description.referencesV. N. Ivanova, J. Struct. Chem. 2000, 41, 135.pl
dc.description.referencesF. Yazdani, M. Seddigh, Mater. Chem. Phys. 2016, 184, 318.pl
dc.identifier.eissn1521-3927-
dc.description.volume44pl
dc.description.issue22pl
dc.description.firstpage2300387pl
dc.identifier.citation2Macromolecular Rapid Communicationspl
Występuje w kolekcji(ach):Artykuły naukowe (WChem)
Artykuły naukowe (WFiz)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Investigation_of_Magnetic_Electrodes.pdf4,24 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)