Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/18154
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Wysocka‑Żołopa, Monika | - |
dc.contributor.author | Brzózka, Aleksandra | - |
dc.contributor.author | Zambrzycka‑Szelewa, Elżbieta | - |
dc.contributor.author | Klekotka, Urszula | - |
dc.contributor.author | Kalska‑Szostko, Beata | - |
dc.contributor.author | Winkler, Krzysztof | - |
dc.date.accessioned | 2025-03-28T10:31:21Z | - |
dc.date.available | 2025-03-28T10:31:21Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Journal of Solid State Electrochemistry, Volume 27, Issue 7 (2023), p. 1919–1934 | pl |
dc.identifier.issn | 1432-8488 | - |
dc.identifier.uri | http://hdl.handle.net/11320/18154 | - |
dc.description.abstract | Nanocomposite of magnetic Fe₃O₄ nanoparticles and polypyrrole was prepared under sonication by a new chemical polymerization method during which Fe₃O₄ nanoparticles acted both as a pyrrole oxidant and as a component in the composite material. Synthesis of this nanocomposite was carried out in aqueous solution acidified to pH 2, a prerequisite for the formation of these types of material and to facilitate pyrrole oxidation by Fe₃O₄ nanoparticles. In this way, two kind of materials were produced: Fe₃O₄/PPy nanocomposite in which magnetite nanoparticles were dispersed in PPy matrix and Fe₃O₄-aggregates@ PPy nanocomposite that exhibits structure in which aggregates of magnetite nanoparticles are surrounded by a layer of polymeric phase. In the latter case, the polymerization process took place in the presence of a surfactant. These nanocomposites were characterized by electron microscopy techniques, IR spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermogravimetry. Particular attention was focused on the study of the electrochemical properties of the formed composites. The composite of Fe₃O₄ and PPy exhibits reversible electrochemical behaviour upon oxidation. The electrode process of the polymeric component oxidation in organic solvents such as acetonitrile and dichloromethane is very similar to the process in an aqueous solution. | pl |
dc.description.sponsorship | This research was funded by Polish National Science Centre grant No. 2020/04/X/ST5/00702 (K.W.). | pl |
dc.language.iso | en | pl |
dc.publisher | Springer Nature | pl |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Nanocomposites electrochemistry | pl |
dc.subject | Magnetic polymers | pl |
dc.subject | Polypyrroles | pl |
dc.subject | Core-shell nanoparticles | pl |
dc.title | Structure and electrochemical properties of magnetite and polypyrrole nanocomposites formed by pyrrole oxidation with magnetite nanoparticles | pl |
dc.type | Article | pl |
dc.rights.holder | © The Author(s) 2023 | pl |
dc.rights.holder | This article is licensed under a Creative Commons Attribution 4.0 International License | pl |
dc.identifier.doi | 10.1007/s10008-023-05554-2 | - |
dc.description.Email | Monika Wysocka-Żołopa: monia@uwb.edu.pl | pl |
dc.description.Email | Krzysztof Winkler: winkler@uwb.edu.pl | pl |
dc.description.Affiliation | Monika Wysocka Żołopa - Department of Chemistry, University of Bialystok | pl |
dc.description.Affiliation | Aleksandra Brzózka - Department of Chemistry, University of Bialystok | pl |
dc.description.Affiliation | Elżbieta Zambrzycka Szelewa - Department of Chemistry, University of Bialystok | pl |
dc.description.Affiliation | Urszula Klekotka - Department of Chemistry, University of Bialystok | pl |
dc.description.Affiliation | Beata Kalska Szostko - Department of Chemistry, University of Bialystok | pl |
dc.description.Affiliation | Krzysztof Winkler - Department of Chemistry, University of Bialystok | pl |
dc.description.references | Shi Y, Pan L, Liu B, Wang Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091. https://doi.org/10.1039/C4TA00484A | pl |
dc.description.references | Xue M, Li F, Chen D, Yang Z, Wang X, Ji J (2016) High-oriented polypyrrole nanotubes for next-generation gas sensor. Adv Mater 28:8265–8270. https://doi.org/10.1002/adma.201602302 | pl |
dc.description.references | Jeon SS, Kim C, Ko J, Im SS (2011) Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. J Mater Chem 21:8146–8151. https://doi.org/10.1039/C1JM10112A | pl |
dc.description.references | Li J, Hu Y, Liang X, Chen J, Zhong L, Liao L, Jiang L, Fuchs H, Wang W, Wang Y, Chi L (2020) Micro organic light emitting diode arrays by patterned growth on structured polypyrrole. Adv Opt Mater 8:1902105. https://doi.org/10.1002/adom.201902105 | pl |
dc.description.references | Tabačiarová J, Mičušík M, Fedorko P, Omastová M (2015) Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polym Degrad Stab 120:392–401. https://doi.org/10. 1016/j.polymdegradstab.2015.07.021 | pl |
dc.description.references | Sapurina I, Li Y, Alekseeva E, Bober P, Trchová M, Morávková Z, Stejskal J (2017) Polypyrrole nanotubes: the tuning of morphology and conductivity. Polymer 113:247–258. https://doi.org/10.1016/j.polymer.2017.02.064 | pl |
dc.description.references | Kang G, Borgens RB, Cho Y (2011) Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuir 27:6179–6184. https://doi.org/10.1021/la104194m | pl |
dc.description.references | Tan Y, Ghandi K (2013) Kinetics and mechanism of pyrrole chemical polymerization. Synth Met 175:183–191. https://doi.org/10.1016/j.synthmet.2013.05.014 | pl |
dc.description.references | Diaz AF, Kanazawa KK, Gardini GP (1979) Electrochemical polymerization of pyrrole. J Chem Soc Chem Commun 635. https://doi.org/10.1039/c39790000635 | pl |
dc.description.references | Bhadani SN, Kumari M, Sen Gupta SK, Sahu GC (1997) Preparation of conducting fibers via the electrochemical polymerization of pyrrole. J Appl Polym Sci 64:1073–1077. https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6%3c1073::AID-APP6%3e3.0.CO;2-I | pl |
dc.description.references | Andriukonis E, Ramanaviciene A, Ramanavicius A (2018) Synthesis of polypyrrole induced by [Fe(CN) ₆] ³⁻ and redox cycling of [Fe(CN) ₆] ⁴⁻/[Fe(CN) ₆] ³⁻. Polymers 10:749. https://doi.org/ 10.3390/polym10070749 | pl |
dc.description.references | Ramanavicius A, Andriukonis E, Stirke A, Mikoliunaite L, Balevicius Z, Ramanaviciene A (2016) Synthesis of polypyrrole within the cell wall of yeast by redox-cycling of [Fe(CN) ₆] ³⁻/[Fe(CN) ₆] ⁴⁻. Enzyme Microb Technol 83:40–47. https://doi.org/ 10.1016/j.enzmictec.2015.11.009 | pl |
dc.description.references | Andriukonis E, Stirke A, Garbaras A, Mikoliunaite L, Ramanaviciene A, Remikis V, Thornton B, Ramanavicius A (2018) Yeast-assisted synthesis of polypyrrole: quantification and influence on the mechanical properties of the cell wall. Colloids Surf B Biointerfaces 164:224–231. https://doi.org/10.1016/j.colsurfb.2018.01.034 | pl |
dc.description.references | Shinde SS, Gund GS, Dubal DP, Jambure SB, Lokhande CD (2014) Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim Acta 119:1–10. https://doi.org/10.1016/j.electacta.2013.10.174 | pl |
dc.description.references | Goel S, Mazumdar NA, Gupta A (2010) Synthesis and characterization of polypyrrole nanofibers with different dopants. Polym Adv Technol 21:205–210. https://doi.org/10.1016/j.electacta. 2013.10.174 | pl |
dc.description.references | Omastová M, Trchová M, Kovářová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455. https://doi.org/10.1016/S0379-6779(02)00498-8 | pl |
dc.description.references | Jiles DC (2003) Recent advances and future directions in magnetic materials. Acta Mater 51:5907–5939. https://doi.org/10.1016/j.actamat.2003.08.011 | pl |
dc.description.references | Kahn O (2000) Chemistry and physics of supramolecular magnetic materials. Acc Chem Res 33:647–657. https://doi.org/10.1021/ar9703138 | pl |
dc.description.references | Li XS, Zhu GT, Luo YB, Yuan BF, Feng YQ (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends Anal Chem 45:233–247. https://doi. org/10.1016/j.trac.2012.10.015 | pl |
dc.description.references | Sarma DD (2001) A new class of magnetic materials: Sr ₂FeMoO₆ and related compounds. Curr Opin Solid State Mater Sci 5:261–268. https://doi.org/10.1016/S1359-0286(01)00014-6 | pl |
dc.description.references | Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006 | pl |
dc.description.references | Stephen ZR, Kievit FM, Zhang M (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14:330–338. https://doi.org/10.1016/S1369-7021(11)70163-8 | pl |
dc.description.references | Revia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168. https://doi.org/10.1016/j.mattod.2015.08.022 | pl |
dc.description.references | Park DE, Chae HS, Choi HJ, Maity A (2015) Magnetite–polypyrrole Core-shell structured microspheres and their dual stimuli-response under electric and magnetic fields. J Mater Chem C 3:3150–3158. https://doi.org/10.1039/C5TC00007F | pl |
dc.description.references | Zhao J, Zhang S, Liu W, Du Z, Fang H (2014) Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochim Acta 121:428–433. https://doi.org/10.1016/j.electacta.2013.12.105 | pl |
dc.description.references | Deng J, He C, Peng Y, Wang J, Long X, Li P, Chan ASC (2003) Magnetic and conductive Fe ₃O ₄–polyaniline nanoparticles with Core-shell structure. Synth Met 139:295–301. https://doi.org/10. 1016/S0379-6779(03)00166-8 | pl |
dc.description.references | Singh K, Ohlan A, Kotnala RK, Bakhshi AK, Dhawan SK (2008) Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with γ-Fe₂O₃ nanoparticles. Mater Chem Phys 112:651–658. https://doi.org/10.1016/j.matchemphys.2008.06.026 | pl |
dc.description.references | Kim YS, Lee SM, Govindaiah P, Lee SJ, Lee SH, Kim JH, Cheong IW (2013) Multifunctional Fe ₃O ₄ nanoparticles-embedded poly(styrene)/poly(thiophene) core/shell composite particles. Synth Met 175:56–61. https://doi.org/10.1016/j.synthmet.2013. 04.019 | pl |
dc.description.references | Yu S-H, Yoshimura M (2002) Ferrite/metal composites fabricated by soft solution processing. Adv Funct Mater 12:9–15. https://doi.org/10.1002/1616-3028(20020101)12:1%3c9::AID-ADFM9%3e3.0.CO;2-A | pl |
dc.description.references | Xing Y, Jin YY, Si JC, Peng ML, Wang XF, Chen C, Cui YL (2015) Controllable synthesis and characterization of Fe ₃O ₄/ Au composite nanoparticles. J Magn Magn Mater 380:150–156. https://doi.org/10.1016/j.jmmm.2014.09.060 | pl |
dc.description.references | Tan L, Zhang X, Liu Q, Jing X, Liu J, Song D, Hu S, Liu L, Wang J (2015) Synthesis of Fe₃O₄@TiO₂ Core-shell magnetic composites for highly efficient sorption of uranium (VI). Colloids Surf Physicochem Eng Asp 469:279–286. https://doi.org/10.1016/j. colsurfa.2015.01.040 | pl |
dc.description.references | Massart R, Cabuil V (1987) Synthèse en milieu alcalin de magnétite colloïdale: contrôle du rendement et de la taille des particules. J Chim Phys 84:967–973. https://doi.org/10.1051/jcp/1987840967 | pl |
dc.description.references | Mascolo MC, Pei Y, Ring TA (2013) Room temperature coprecipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549–5567. https://doi. org/10.3390/ma6125549 | pl |
dc.description.references | Liz L, López Quintela MA, Mira J, Rivas J (1994) Preparation of colloidal Fe₃O ₄ ultrafine particles in microemulsions. J Mater Sci 29:3797–3801. https://doi.org/10.1007/BF00357351 | pl |
dc.description.references | Deng J, Peng Y, He C, Long X, Li P, Chan ASC (2003) Magnetic and conducting Fe₃O₄ –polypyrrole nanoparticles with core-shell structure. Polym Int 52:1182–1187. https://doi.org/10.1002/pi.1237 | pl |
dc.description.references | Zhao B, Nan Z (2011) Preparation of stable magnetic nanofluids containing Fe₃O₄ @PPy nanoparticles by a novel onepot route. Nanoscale Res Lett 6:230. https://doi.org/10.1186/ 1556-276X-6-230 | pl |
dc.description.references | Qiao M, Lei X, Ma Y, Tian L, Su K, Zhang Q (2016) WellDefined Core-Shell Fe₃O₄@polypyrrole composite microspheres with tunable shell thickness: synthesis and their superior microwave absorption performance in the Ku band. Ind Eng Chem Res 55:6263–6275. https://doi.org/10.1021/acs.iecr.5b04814 | pl |
dc.description.references | Zhang WD, Xiao HM, Zhu LP, Fu SY, Wan MX (2010) Facile one-step synthesis of electromagnetic functionalized polypyrrole/Fe₃O₄ nanotubes via a self-assembly process. J Polym Sci Part Polym Chem 48:320–326. https://doi.org/10.1002/pola.23787 | pl |
dc.description.references | Kalska-Szostko B, Rogowska M, Dubis A, Szymański K (2012) Enzymes immobilization on Fe₃O₄–gold nanoparticles. Appl Surf Sci 258:2783–2787. https://doi.org/10.1016/j.apsusc.2011.10.132 | pl |
dc.description.references | Pang SC, Chin SF, Anderson MA (2007) Redox equilibria of iron oxides in aqueous-based magnetite dispersions: effect of pH and redox potential. J Colloid Interface Sci 311:94–101. https://doi.org/10.1016/j.jcis.2007.02.058 | pl |
dc.description.references | Andrieux CP, Audebert P, Hapiot P, Saveant JM (1990) Observation of the cation radicals of pyrrole and of some substituted pyrroles in fast-scan cyclic voltammetry. Standard potentials and lifetimes. J Am Chem Soc 112:2439–2440. https://doi.org/10.1021/ja00162a065 | pl |
dc.description.references | Chen S, Liu H, Wang Y, Xu YS, Liu W, He D, Liu X, Liu J, Hu C (2017) Electrochemical capacitance of spherical nanoparticles formed by electrodeposition of intrinsic polypyrrole onto Au electrode. Electrochim Acta 232:72–79. https://doi.org/10.1016/j.electacta.2017.02.133 | pl |
dc.description.references | Scharifker BR, Fermín DJ (1994) The role of intermediates in solution in the initial stages of electrodeposition of polypyrrole. J Electroanal Chem 365:35–39. https://doi.org/10.1016/0022- 0728(93)02993-R | pl |
dc.description.references | Zheng W, Razal JM, Spinks GM, Truong VT, Whitten PG, Wallace GG (2012) The role of unbound oligomers in the nucleation and growth of electrodeposited polypyrrole and method for preparing high strength, high conductivity films. Langmuir 28:10891–10897. https://doi.org/10.1021/la301701g | pl |
dc.description.references | Garfias-García E, Romero-Romo M, Ramírez-Silva MT, Morales J, Palomar-Pardavé M (2010) Eletrochemical nucleation of polypyrrole onto different substrates. Int J Electrochem Sci 5 | pl |
dc.description.references | Fermín DJ, Scharifker BR (1993) Products in solution during electrodeposition of polypyrrole. J Electroanal Chem 357:273–287. https://doi.org/10.1016/0022-0728(93)80385-U | pl |
dc.description.references | Guyard L, Hapiot P, Neta P (1997) Redox chemistry of bipyrroles: further insights into the oxidative polymerization mechanism of pyrrole and oligopyrroles. J Phys Chem B 101:5698–5706. https://doi.org/10.1021/jp9706083 | pl |
dc.description.references | Saraç AS, Sönmez G (2002) Spectroelectrochemistry of pyrrole oligomers in the presence of acrylamide. Polym Int 51:594–600. https://doi.org/10.1002/pi.914 | pl |
dc.description.references | Stolarz A, Szydłowski J (1994) Kinetics of tritium isotope exchange between liquid pyrrole and gaseous hydrogen. J Radioanal Nucl Chem 185:219–226. https://doi.org/10.1007/BF02041294 | pl |
dc.description.references | Schwartz CP, Uejio JS, Duffin AM, England AH, Prendergast D, Saykally RJ (2009) Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy. J Chem Phys 131:114509. https://doi.org/10.1063/1.3223539 | pl |
dc.description.references | Hawkins SJ, Ratcliffe NM (2000) A study of the effects of acid on the polymerisationof pyrrole, on the oxidative polymerisation of pyrrole and on polypyrrole. J Mater Chem 10:2057–2062. https://doi.org/10.1039/B001912G | pl |
dc.description.references | Wysocka-Zolopa M, Goclon J, Basa A, Winkler K (2018) Polypyrrole nanoparticles doped with fullerene uniformly distributed in the polymeric phase: synthesis, morphology, and electrochemical properties. J Phys Chem C 122:25539–25554. https://doi.org/10.1021/acs.jpcc.8b07681 | pl |
dc.description.references | Goclon J, Winkler K (2018) Band gap tuning in composites of polypyrrole derivatives and C60Pd3 polymer as models for p–n junction: a first principle computational study. ChemistrySelect 3:373–383. https://doi.org/10.1002/slct.201702752 | pl |
dc.description.references | Wang Y, Zou B, Gao T, Wu X, Lou S, Zhou S (2012) Synthesis of orange-like Fe₃O₄ /PPy composite microspheres and their excellent Cr(VI) ion removal properties. J Mater Chem 22:9034–9040. https://doi.org/10.1039/C2JM30440F | pl |
dc.description.references | Peng X, Zhang W, Gai L, Jiang H, Wang Y, Zhao L (2015) Dedoped Fe₃O₄/PPy nanocomposite with high anti-interfering ability for effective separation of Ag(I) from mixed metal-ion solution. Chem Eng J 280:197–205. https://doi.org/10.1016/j.cej.2015.05.118 | pl |
dc.description.references | Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051 | pl |
dc.description.references | Wilson D, Langell MA (2014) XPS analysis of oleylamine/oleic acid capped Fe₃O₄ nanoparticles as a function of temperature. Appl Surf Sci 303:6–13. https://doi.org/10.1016/j.apsusc.2014. 02.006 | pl |
dc.description.references | Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, WuMT SDB (2005) Characterization of aqueous dispersions of Fe₃O₄ nanoparticles and their biomedical applications. Biomaterials 26:729–738. https://doi.org/10.1016/j.biomaterials.2004.03.016 | pl |
dc.description.references | Kolen’ko YV, Bañobre-López M, Rodríguez-Abreu C, CarbóArgibay E, Sailsman A, Piñeiro-Redondo Y, Cerqueira MF, Petrovykh DY, Kovnir K, Lebedev OI, Rivas J (2014) Large-scale synthesis of colloidal Fe₃O₄ nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J Phys Chem C 118:8691–8701. https://doi.org/10.1021/jp500816u | pl |
dc.description.references | Rajagopalan R, Iroh JO (2003) Characterization of polyaniline–polypyrrole composite coatings on low carbon steel: a XPS and infrared spectroscopy study. Appl Surf Sci 218:58–69. https://doi.org/10.1016/S0169-4332(03)00579-8 | pl |
dc.description.references | Wuang SC, Neoh KG, Kang E-T, Pack DW, Leckband DE (2007) Synthesis and functionalization of polypyrrole-Fe₃O₄ nanoparticles for applications in biomedicine. J Mater Chem 17:3354–3362. https://doi.org/10.1039/B702983G | pl |
dc.description.references | Malitesta C, Losito I, Sabbatini L, Zambonin PG (1995) New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J Electron Spectrosc Relat Phenom 76:629–634. https://doi.org/10.1016/0368-2048(95)02438-7 | pl |
dc.description.references | Qiu G, Wang Q, Nie M (2006) Polypyrrole-Fe₃O₄ magnetic nanocomposite prepared by ultrasonic irradiation. Macromol Mater Eng 291:68–74. https://doi.org/10.1002/mame.200500285 | pl |
dc.description.references | Janem N, Azizi ZS, Tehranchi MM (2021) Microwave absorption and magnetic properties of thin-film Fe₃O₄@polypyrrole nanocomposites: the synthesis method effect. Synth Met 282:116948. https://doi.org/10.1016/j.synthmet.2021.116948 | pl |
dc.description.references | Mo Z, Gou H, He J, Wang JJ, Guo R (2014) Preparation and characterization of conductive and magnetic PPy/Fe3O4/Ag nanocomposites. Polym Compos 35:450–455. https://doi.org/10.1002/pc.22680 | pl |
dc.description.references | Jureviciute I, Bruckenstein S (2003) Electrochemical activity of chemically deposited polypyrrole films. J Solid State Electrochem 7:554–560. https://doi.org/10.1007/s10008-003-0384-x | pl |
dc.description.references | Sahoo S, Karthikeyan G, Nayak GCh, Das CK (2011) Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth Met 161:1713–1719. https://doi.org/10. 1016/j.synthmet.2011.06.011 | pl |
dc.description.references | Kim J-H, Sharma AK, Lee Y-S (2006) Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater Lett 60:1697–1701. https://doi.org/ 10.1016/j.matlet.2005.12.002 | pl |
dc.description.references | Bard AJ, Faulkner LR (1980) Electrochemical methods., 2nd ed. Wiley, New York p. 522 | pl |
dc.description.references | Kuwabata S, Yoneyama H, Tamura H (1984) Redox behavior and electrochromic properties of polypyrrole films in aqueous solutions. Bull Chem Soc Jpn 57:2247–2253. https://doi.org/10.1246/bcsj.57.2247 | pl |
dc.description.references | Akhtar AJ, Mishra S, Saha SK (2020) Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor. J Mater Sci Mater Electron 31:11637–11645. https://doi.org/10.1007/s10854-020-03714-y | pl |
dc.description.references | Huang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438. https://doi.org/10. 1016/j.nanoen.2016.02.047 | pl |
dc.description.references | Ramesh S, Yadav HM, Karuppasamy K, Vikraman D, Hs K, Kim JH, Kim HS (2019) Fabrication of manganese oxide@nitrogen doped graphene oxide/polypyrrole (MnO₂@NGO/PPy) hybrid composite electrodes for energy storage devices. J Mater Res Technol 8:4227–4238. https://doi.org/10.1016/j.jmrt.2019.07.033 | pl |
dc.description.references | Samukaite-Bubniene U, Valiūnienė A, Bucinskas V, Genys P, Ratautaite V, Ramanaviciene A, Aksun E, Tereshchenko A, Zeybek B, Ramanavicius A (2021) Towards supercapacitors: cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode. Colloids Surf Physicochem Eng Asp 610:125750. https://doi.org/10.1016/j.colsurfa.2020.125750 | pl |
dc.identifier.eissn | 1433-0768 | - |
dc.description.volume | 27 | pl |
dc.description.issue | 7 | pl |
dc.description.firstpage | 1919 | pl |
dc.description.lastpage | 1934 | pl |
dc.identifier.citation2 | Journal of Solid State Electrochemistry | pl |
dc.identifier.orcid | brakorcid | - |
dc.identifier.orcid | brakorcid | - |
dc.identifier.orcid | brakorcid | - |
dc.identifier.orcid | brakorcid | - |
dc.identifier.orcid | brakorcid | - |
dc.identifier.orcid | 0000-0002-0433-7001 | - |
Występuje w kolekcji(ach): | Artykuły naukowe (WChem) |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
J Solid State Electrochem.pdf | 2,33 MB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL