REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/18154
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorWysocka‑Żołopa, Monika-
dc.contributor.authorBrzózka, Aleksandra-
dc.contributor.authorZambrzycka‑Szelewa, Elżbieta-
dc.contributor.authorKlekotka, Urszula-
dc.contributor.authorKalska‑Szostko, Beata-
dc.contributor.authorWinkler, Krzysztof-
dc.date.accessioned2025-03-28T10:31:21Z-
dc.date.available2025-03-28T10:31:21Z-
dc.date.issued2023-
dc.identifier.citationJournal of Solid State Electrochemistry, Volume 27, Issue 7 (2023), p. 1919–1934pl
dc.identifier.issn1432-8488-
dc.identifier.urihttp://hdl.handle.net/11320/18154-
dc.description.abstractNanocomposite of magnetic Fe₃O₄ nanoparticles and polypyrrole was prepared under sonication by a new chemical polymerization method during which Fe₃O₄ nanoparticles acted both as a pyrrole oxidant and as a component in the composite material. Synthesis of this nanocomposite was carried out in aqueous solution acidified to pH 2, a prerequisite for the formation of these types of material and to facilitate pyrrole oxidation by Fe₃O₄ nanoparticles. In this way, two kind of materials were produced: Fe₃O₄/PPy nanocomposite in which magnetite nanoparticles were dispersed in PPy matrix and Fe₃O₄-aggregates@ PPy nanocomposite that exhibits structure in which aggregates of magnetite nanoparticles are surrounded by a layer of polymeric phase. In the latter case, the polymerization process took place in the presence of a surfactant. These nanocomposites were characterized by electron microscopy techniques, IR spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy and thermogravimetry. Particular attention was focused on the study of the electrochemical properties of the formed composites. The composite of Fe₃O₄ and PPy exhibits reversible electrochemical behaviour upon oxidation. The electrode process of the polymeric component oxidation in organic solvents such as acetonitrile and dichloromethane is very similar to the process in an aqueous solution.pl
dc.description.sponsorshipThis research was funded by Polish National Science Centre grant No. 2020/04/X/ST5/00702 (K.W.).pl
dc.language.isoenpl
dc.publisherSpringer Naturepl
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNanocomposites electrochemistrypl
dc.subjectMagnetic polymerspl
dc.subjectPolypyrrolespl
dc.subjectCore-shell nanoparticlespl
dc.titleStructure and electrochemical properties of magnetite and polypyrrole nanocomposites formed by pyrrole oxidation with magnetite nanoparticlespl
dc.typeArticlepl
dc.rights.holder© The Author(s) 2023pl
dc.rights.holderThis article is licensed under a Creative Commons Attribution 4.0 International Licensepl
dc.identifier.doi10.1007/s10008-023-05554-2-
dc.description.EmailMonika Wysocka-Żołopa: monia@uwb.edu.plpl
dc.description.EmailKrzysztof Winkler: winkler@uwb.edu.plpl
dc.description.AffiliationMonika Wysocka Żołopa - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationAleksandra Brzózka - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationElżbieta Zambrzycka Szelewa - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationUrszula Klekotka - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationBeata Kalska Szostko - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationKrzysztof Winkler - Department of Chemistry, University of Bialystokpl
dc.description.referencesShi Y, Pan L, Liu B, Wang Cui Y, Bao Z, Yu G (2014) Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2:6086–6091. https://doi.org/10.1039/C4TA00484Apl
dc.description.referencesXue M, Li F, Chen D, Yang Z, Wang X, Ji J (2016) High-oriented polypyrrole nanotubes for next-generation gas sensor. Adv Mater 28:8265–8270. https://doi.org/10.1002/adma.201602302pl
dc.description.referencesJeon SS, Kim C, Ko J, Im SS (2011) Spherical polypyrrole nanoparticles as a highly efficient counter electrode for dye-sensitized solar cells. J Mater Chem 21:8146–8151. https://doi.org/10.1039/C1JM10112Apl
dc.description.referencesLi J, Hu Y, Liang X, Chen J, Zhong L, Liao L, Jiang L, Fuchs H, Wang W, Wang Y, Chi L (2020) Micro organic light emitting diode arrays by patterned growth on structured polypyrrole. Adv Opt Mater 8:1902105. https://doi.org/10.1002/adom.201902105pl
dc.description.referencesTabačiarová J, Mičušík M, Fedorko P, Omastová M (2015) Study of polypyrrole aging by XPS, FTIR and conductivity measurements. Polym Degrad Stab 120:392–401. https://doi.org/10. 1016/j.polymdegradstab.2015.07.021pl
dc.description.referencesSapurina I, Li Y, Alekseeva E, Bober P, Trchová M, Morávková Z, Stejskal J (2017) Polypyrrole nanotubes: the tuning of morphology and conductivity. Polymer 113:247–258. https://doi.org/10.1016/j.polymer.2017.02.064pl
dc.description.referencesKang G, Borgens RB, Cho Y (2011) Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuir 27:6179–6184. https://doi.org/10.1021/la104194mpl
dc.description.referencesTan Y, Ghandi K (2013) Kinetics and mechanism of pyrrole chemical polymerization. Synth Met 175:183–191. https://doi.org/10.1016/j.synthmet.2013.05.014pl
dc.description.referencesDiaz AF, Kanazawa KK, Gardini GP (1979) Electrochemical polymerization of pyrrole. J Chem Soc Chem Commun 635. https://doi.org/10.1039/c39790000635pl
dc.description.referencesBhadani SN, Kumari M, Sen Gupta SK, Sahu GC (1997) Preparation of conducting fibers via the electrochemical polymerization of pyrrole. J Appl Polym Sci 64:1073–1077. https://doi.org/10.1002/(SICI)1097-4628(19970509)64:6%3c1073::AID-APP6%3e3.0.CO;2-Ipl
dc.description.referencesAndriukonis E, Ramanaviciene A, Ramanavicius A (2018) Synthesis of polypyrrole induced by [Fe(CN) ₆] ³⁻ and redox cycling of [Fe(CN) ₆] ⁴⁻/[Fe(CN) ₆] ³⁻. Polymers 10:749. https://doi.org/ 10.3390/polym10070749pl
dc.description.referencesRamanavicius A, Andriukonis E, Stirke A, Mikoliunaite L, Balevicius Z, Ramanaviciene A (2016) Synthesis of polypyrrole within the cell wall of yeast by redox-cycling of [Fe(CN) ₆] ³⁻/[Fe(CN) ₆] ⁴⁻. Enzyme Microb Technol 83:40–47. https://doi.org/ 10.1016/j.enzmictec.2015.11.009pl
dc.description.referencesAndriukonis E, Stirke A, Garbaras A, Mikoliunaite L, Ramanaviciene A, Remikis V, Thornton B, Ramanavicius A (2018) Yeast-assisted synthesis of polypyrrole: quantification and influence on the mechanical properties of the cell wall. Colloids Surf B Biointerfaces 164:224–231. https://doi.org/10.1016/j.colsurfb.2018.01.034pl
dc.description.referencesShinde SS, Gund GS, Dubal DP, Jambure SB, Lokhande CD (2014) Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim Acta 119:1–10. https://doi.org/10.1016/j.electacta.2013.10.174pl
dc.description.referencesGoel S, Mazumdar NA, Gupta A (2010) Synthesis and characterization of polypyrrole nanofibers with different dopants. Polym Adv Technol 21:205–210. https://doi.org/10.1016/j.electacta. 2013.10.174pl
dc.description.referencesOmastová M, Trchová M, Kovářová J, Stejskal J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455. https://doi.org/10.1016/S0379-6779(02)00498-8pl
dc.description.referencesJiles DC (2003) Recent advances and future directions in magnetic materials. Acta Mater 51:5907–5939. https://doi.org/10.1016/j.actamat.2003.08.011pl
dc.description.referencesKahn O (2000) Chemistry and physics of supramolecular magnetic materials. Acc Chem Res 33:647–657. https://doi.org/10.1021/ar9703138pl
dc.description.referencesLi XS, Zhu GT, Luo YB, Yuan BF, Feng YQ (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends Anal Chem 45:233–247. https://doi. org/10.1016/j.trac.2012.10.015pl
dc.description.referencesSarma DD (2001) A new class of magnetic materials: Sr ₂FeMoO₆ and related compounds. Curr Opin Solid State Mater Sci 5:261–268. https://doi.org/10.1016/S1359-0286(01)00014-6pl
dc.description.referencesCabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53:3436–3441. https://doi.org/10.1016/j.electacta.2007.12.006pl
dc.description.referencesStephen ZR, Kievit FM, Zhang M (2011) Magnetite nanoparticles for medical MR imaging. Mater Today 14:330–338. https://doi.org/10.1016/S1369-7021(11)70163-8pl
dc.description.referencesRevia RA, Zhang M (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater Today 19:157–168. https://doi.org/10.1016/j.mattod.2015.08.022pl
dc.description.referencesPark DE, Chae HS, Choi HJ, Maity A (2015) Magnetite–polypyrrole Core-shell structured microspheres and their dual stimuli-response under electric and magnetic fields. J Mater Chem C 3:3150–3158. https://doi.org/10.1039/C5TC00007Fpl
dc.description.referencesZhao J, Zhang S, Liu W, Du Z, Fang H (2014) Fe3O4/PPy composite nanospheres as anode for lithium-ion batteries with superior cycling performance. Electrochim Acta 121:428–433. https://doi.org/10.1016/j.electacta.2013.12.105pl
dc.description.referencesDeng J, He C, Peng Y, Wang J, Long X, Li P, Chan ASC (2003) Magnetic and conductive Fe ₃O ₄–polyaniline nanoparticles with Core-shell structure. Synth Met 139:295–301. https://doi.org/10. 1016/S0379-6779(03)00166-8pl
dc.description.referencesSingh K, Ohlan A, Kotnala RK, Bakhshi AK, Dhawan SK (2008) Dielectric and magnetic properties of conducting ferromagnetic composite of polyaniline with γ-Fe₂O₃ nanoparticles. Mater Chem Phys 112:651–658. https://doi.org/10.1016/j.matchemphys.2008.06.026pl
dc.description.referencesKim YS, Lee SM, Govindaiah P, Lee SJ, Lee SH, Kim JH, Cheong IW (2013) Multifunctional Fe ₃O ₄ nanoparticles-embedded poly(styrene)/poly(thiophene) core/shell composite particles. Synth Met 175:56–61. https://doi.org/10.1016/j.synthmet.2013. 04.019pl
dc.description.referencesYu S-H, Yoshimura M (2002) Ferrite/metal composites fabricated by soft solution processing. Adv Funct Mater 12:9–15. https://doi.org/10.1002/1616-3028(20020101)12:1%3c9::AID-ADFM9%3e3.0.CO;2-Apl
dc.description.referencesXing Y, Jin YY, Si JC, Peng ML, Wang XF, Chen C, Cui YL (2015) Controllable synthesis and characterization of Fe ₃O ₄/ Au composite nanoparticles. J Magn Magn Mater 380:150–156. https://doi.org/10.1016/j.jmmm.2014.09.060pl
dc.description.referencesTan L, Zhang X, Liu Q, Jing X, Liu J, Song D, Hu S, Liu L, Wang J (2015) Synthesis of Fe₃O₄@TiO₂ Core-shell magnetic composites for highly efficient sorption of uranium (VI). Colloids Surf Physicochem Eng Asp 469:279–286. https://doi.org/10.1016/j. colsurfa.2015.01.040pl
dc.description.referencesMassart R, Cabuil V (1987) Synthèse en milieu alcalin de magnétite colloïdale: contrôle du rendement et de la taille des particules. J Chim Phys 84:967–973. https://doi.org/10.1051/jcp/1987840967pl
dc.description.referencesMascolo MC, Pei Y, Ring TA (2013) Room temperature coprecipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6:5549–5567. https://doi. org/10.3390/ma6125549pl
dc.description.referencesLiz L, López Quintela MA, Mira J, Rivas J (1994) Preparation of colloidal Fe₃O ₄ ultrafine particles in microemulsions. J Mater Sci 29:3797–3801. https://doi.org/10.1007/BF00357351pl
dc.description.referencesDeng J, Peng Y, He C, Long X, Li P, Chan ASC (2003) Magnetic and conducting Fe₃O₄ –polypyrrole nanoparticles with core-shell structure. Polym Int 52:1182–1187. https://doi.org/10.1002/pi.1237pl
dc.description.referencesZhao B, Nan Z (2011) Preparation of stable magnetic nanofluids containing Fe₃O₄ @PPy nanoparticles by a novel onepot route. Nanoscale Res Lett 6:230. https://doi.org/10.1186/ 1556-276X-6-230pl
dc.description.referencesQiao M, Lei X, Ma Y, Tian L, Su K, Zhang Q (2016) WellDefined Core-Shell Fe₃O₄@polypyrrole composite microspheres with tunable shell thickness: synthesis and their superior microwave absorption performance in the Ku band. Ind Eng Chem Res 55:6263–6275. https://doi.org/10.1021/acs.iecr.5b04814pl
dc.description.referencesZhang WD, Xiao HM, Zhu LP, Fu SY, Wan MX (2010) Facile one-step synthesis of electromagnetic functionalized polypyrrole/Fe₃O₄ nanotubes via a self-assembly process. J Polym Sci Part Polym Chem 48:320–326. https://doi.org/10.1002/pola.23787pl
dc.description.referencesKalska-Szostko B, Rogowska M, Dubis A, Szymański K (2012) Enzymes immobilization on Fe₃O₄–gold nanoparticles. Appl Surf Sci 258:2783–2787. https://doi.org/10.1016/j.apsusc.2011.10.132pl
dc.description.referencesPang SC, Chin SF, Anderson MA (2007) Redox equilibria of iron oxides in aqueous-based magnetite dispersions: effect of pH and redox potential. J Colloid Interface Sci 311:94–101. https://doi.org/10.1016/j.jcis.2007.02.058pl
dc.description.referencesAndrieux CP, Audebert P, Hapiot P, Saveant JM (1990) Observation of the cation radicals of pyrrole and of some substituted pyrroles in fast-scan cyclic voltammetry. Standard potentials and lifetimes. J Am Chem Soc 112:2439–2440. https://doi.org/10.1021/ja00162a065pl
dc.description.referencesChen S, Liu H, Wang Y, Xu YS, Liu W, He D, Liu X, Liu J, Hu C (2017) Electrochemical capacitance of spherical nanoparticles formed by electrodeposition of intrinsic polypyrrole onto Au electrode. Electrochim Acta 232:72–79. https://doi.org/10.1016/j.electacta.2017.02.133pl
dc.description.referencesScharifker BR, Fermín DJ (1994) The role of intermediates in solution in the initial stages of electrodeposition of polypyrrole. J Electroanal Chem 365:35–39. https://doi.org/10.1016/0022- 0728(93)02993-Rpl
dc.description.referencesZheng W, Razal JM, Spinks GM, Truong VT, Whitten PG, Wallace GG (2012) The role of unbound oligomers in the nucleation and growth of electrodeposited polypyrrole and method for preparing high strength, high conductivity films. Langmuir 28:10891–10897. https://doi.org/10.1021/la301701gpl
dc.description.referencesGarfias-García E, Romero-Romo M, Ramírez-Silva MT, Morales J, Palomar-Pardavé M (2010) Eletrochemical nucleation of polypyrrole onto different substrates. Int J Electrochem Sci 5pl
dc.description.referencesFermín DJ, Scharifker BR (1993) Products in solution during electrodeposition of polypyrrole. J Electroanal Chem 357:273–287. https://doi.org/10.1016/0022-0728(93)80385-Upl
dc.description.referencesGuyard L, Hapiot P, Neta P (1997) Redox chemistry of bipyrroles: further insights into the oxidative polymerization mechanism of pyrrole and oligopyrroles. J Phys Chem B 101:5698–5706. https://doi.org/10.1021/jp9706083pl
dc.description.referencesSaraç AS, Sönmez G (2002) Spectroelectrochemistry of pyrrole oligomers in the presence of acrylamide. Polym Int 51:594–600. https://doi.org/10.1002/pi.914pl
dc.description.referencesStolarz A, Szydłowski J (1994) Kinetics of tritium isotope exchange between liquid pyrrole and gaseous hydrogen. J Radioanal Nucl Chem 185:219–226. https://doi.org/10.1007/BF02041294pl
dc.description.referencesSchwartz CP, Uejio JS, Duffin AM, England AH, Prendergast D, Saykally RJ (2009) Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy. J Chem Phys 131:114509. https://doi.org/10.1063/1.3223539pl
dc.description.referencesHawkins SJ, Ratcliffe NM (2000) A study of the effects of acid on the polymerisationof pyrrole, on the oxidative polymerisation of pyrrole and on polypyrrole. J Mater Chem 10:2057–2062. https://doi.org/10.1039/B001912Gpl
dc.description.referencesWysocka-Zolopa M, Goclon J, Basa A, Winkler K (2018) Polypyrrole nanoparticles doped with fullerene uniformly distributed in the polymeric phase: synthesis, morphology, and electrochemical properties. J Phys Chem C 122:25539–25554. https://doi.org/10.1021/acs.jpcc.8b07681pl
dc.description.referencesGoclon J, Winkler K (2018) Band gap tuning in composites of polypyrrole derivatives and C60Pd3 polymer as models for p–n junction: a first principle computational study. ChemistrySelect 3:373–383. https://doi.org/10.1002/slct.201702752pl
dc.description.referencesWang Y, Zou B, Gao T, Wu X, Lou S, Zhou S (2012) Synthesis of orange-like Fe₃O₄ /PPy composite microspheres and their excellent Cr(VI) ion removal properties. J Mater Chem 22:9034–9040. https://doi.org/10.1039/C2JM30440Fpl
dc.description.referencesPeng X, Zhang W, Gai L, Jiang H, Wang Y, Zhao L (2015) Dedoped Fe₃O₄/PPy nanocomposite with high anti-interfering ability for effective separation of Ag(I) from mixed metal-ion solution. Chem Eng J 280:197–205. https://doi.org/10.1016/j.cej.2015.05.118pl
dc.description.referencesBiesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051pl
dc.description.referencesWilson D, Langell MA (2014) XPS analysis of oleylamine/oleic acid capped Fe₃O₄ nanoparticles as a function of temperature. Appl Surf Sci 303:6–13. https://doi.org/10.1016/j.apsusc.2014. 02.006pl
dc.description.referencesCheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, WuMT SDB (2005) Characterization of aqueous dispersions of Fe₃O₄ nanoparticles and their biomedical applications. Biomaterials 26:729–738. https://doi.org/10.1016/j.biomaterials.2004.03.016pl
dc.description.referencesKolen’ko YV, Bañobre-López M, Rodríguez-Abreu C, CarbóArgibay E, Sailsman A, Piñeiro-Redondo Y, Cerqueira MF, Petrovykh DY, Kovnir K, Lebedev OI, Rivas J (2014) Large-scale synthesis of colloidal Fe₃O₄ nanoparticles exhibiting high heating efficiency in magnetic hyperthermia. J Phys Chem C 118:8691–8701. https://doi.org/10.1021/jp500816upl
dc.description.referencesRajagopalan R, Iroh JO (2003) Characterization of polyaniline–polypyrrole composite coatings on low carbon steel: a XPS and infrared spectroscopy study. Appl Surf Sci 218:58–69. https://doi.org/10.1016/S0169-4332(03)00579-8pl
dc.description.referencesWuang SC, Neoh KG, Kang E-T, Pack DW, Leckband DE (2007) Synthesis and functionalization of polypyrrole-Fe₃O₄ nanoparticles for applications in biomedicine. J Mater Chem 17:3354–3362. https://doi.org/10.1039/B702983Gpl
dc.description.referencesMalitesta C, Losito I, Sabbatini L, Zambonin PG (1995) New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J Electron Spectrosc Relat Phenom 76:629–634. https://doi.org/10.1016/0368-2048(95)02438-7pl
dc.description.referencesQiu G, Wang Q, Nie M (2006) Polypyrrole-Fe₃O₄ magnetic nanocomposite prepared by ultrasonic irradiation. Macromol Mater Eng 291:68–74. https://doi.org/10.1002/mame.200500285pl
dc.description.referencesJanem N, Azizi ZS, Tehranchi MM (2021) Microwave absorption and magnetic properties of thin-film Fe₃O₄@polypyrrole nanocomposites: the synthesis method effect. Synth Met 282:116948. https://doi.org/10.1016/j.synthmet.2021.116948pl
dc.description.referencesMo Z, Gou H, He J, Wang JJ, Guo R (2014) Preparation and characterization of conductive and magnetic PPy/Fe3O4/Ag nanocomposites. Polym Compos 35:450–455. https://doi.org/10.1002/pc.22680pl
dc.description.referencesJureviciute I, Bruckenstein S (2003) Electrochemical activity of chemically deposited polypyrrole films. J Solid State Electrochem 7:554–560. https://doi.org/10.1007/s10008-003-0384-xpl
dc.description.referencesSahoo S, Karthikeyan G, Nayak GCh, Das CK (2011) Electrochemical characterization of in situ polypyrrole coated graphene nanocomposites. Synth Met 161:1713–1719. https://doi.org/10. 1016/j.synthmet.2011.06.011pl
dc.description.referencesKim J-H, Sharma AK, Lee Y-S (2006) Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors. Mater Lett 60:1697–1701. https://doi.org/ 10.1016/j.matlet.2005.12.002pl
dc.description.referencesBard AJ, Faulkner LR (1980) Electrochemical methods., 2nd ed. Wiley, New York p. 522pl
dc.description.referencesKuwabata S, Yoneyama H, Tamura H (1984) Redox behavior and electrochromic properties of polypyrrole films in aqueous solutions. Bull Chem Soc Jpn 57:2247–2253. https://doi.org/10.1246/bcsj.57.2247pl
dc.description.referencesAkhtar AJ, Mishra S, Saha SK (2020) Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor. J Mater Sci Mater Electron 31:11637–11645. https://doi.org/10.1007/s10854-020-03714-ypl
dc.description.referencesHuang Y, Li H, Wang Z, Zhu M, Pei Z, Xue Q, Huang Y, Zhi C (2016) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438. https://doi.org/10. 1016/j.nanoen.2016.02.047pl
dc.description.referencesRamesh S, Yadav HM, Karuppasamy K, Vikraman D, Hs K, Kim JH, Kim HS (2019) Fabrication of manganese oxide@nitrogen doped graphene oxide/polypyrrole (MnO₂@NGO/PPy) hybrid composite electrodes for energy storage devices. J Mater Res Technol 8:4227–4238. https://doi.org/10.1016/j.jmrt.2019.07.033pl
dc.description.referencesSamukaite-Bubniene U, Valiūnienė A, Bucinskas V, Genys P, Ratautaite V, Ramanaviciene A, Aksun E, Tereshchenko A, Zeybek B, Ramanavicius A (2021) Towards supercapacitors: cyclic voltammetry and fast Fourier transform electrochemical impedance spectroscopy based evaluation of polypyrrole electrochemically deposited on the pencil graphite electrode. Colloids Surf Physicochem Eng Asp 610:125750. https://doi.org/10.1016/j.colsurfa.2020.125750pl
dc.identifier.eissn1433-0768-
dc.description.volume27pl
dc.description.issue7pl
dc.description.firstpage1919pl
dc.description.lastpage1934pl
dc.identifier.citation2Journal of Solid State Electrochemistrypl
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-0433-7001-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
J Solid State Electrochem.pdf2,33 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons