REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/18149
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorWysocka-Żołopa, Monika-
dc.contributor.authorBreczko, Joanna-
dc.contributor.authorGrądzka, Emilia-
dc.contributor.authorBasa, Anna-
dc.contributor.authorGoclon, Jakub-
dc.contributor.authorDubis, Alina-
dc.contributor.authorWinkler, Krzysztof-
dc.date.accessioned2025-03-28T09:06:05Z-
dc.date.available2025-03-28T09:06:05Z-
dc.date.issued2021-
dc.identifier.citationChemElectroChem, Volume 8, Issue 16 (2021), p. 1-16pl
dc.identifier.issn2196-0216-
dc.identifier.urihttp://hdl.handle.net/11320/18149-
dc.descriptionDedicated to Professor Marcin Opałło in recognition to his contribution to electrochemistry.pl
dc.description.abstractA new approach to the formation of composites of carbon nanotubes and polypyrrole (PPy) is proposed. Oxidized multi-walled carbon nanotubes (ox-MWCNTs) are used as oxidation agents in pyrrole polymerization. The polymeric phase is deposited both at the surface of the carbon nanotube to form a core-shell structure and in the empty spaces of the MWCNT network. Each form of the polypyrrole phase exhibits different electrochemical properties. PPy deposited directly at the carbon nanotube surface as a uniform and dense layer is oxidized at less positive potentials, compared to the polymeric material deposited in the pores of the nanotube network. MWCNTs with anions incorporated into structural defects formed during their oxidation in a piranha solution also act as dopants of the oxidized form of PPy. The polymeric film deposited directly at the ox-MWCNT surface is in its oxidized state. The redox processes involving this part of the PPy film are accompanied by the transport of cations of the supporting electrolyte. The charge transfer between ox-MWCNTs and the deposited PPy film is confirmed by the results of the theoretical calculations of the energy states at the carbon nanotube and polypyrrole interface. A neutral PPy film located in layers remote from the surface of the nanotube is oxidized at more positive potentials. The oxidation of PPy located in the pores of the ox-MWCNT network results in a broad voltammetric peak formation.pl
dc.description.sponsorshipThis research was funded by the Polish National Centre of Science, grant number 2016/21/B/ST5/02496 to K.W.pl
dc.language.isoenpl
dc.publisherWiley-VCHpl
dc.subjectpolypyrrolepl
dc.subjectMWCNTpl
dc.subjectelectrochemically active compositespl
dc.subjectnanocompositespl
dc.titleOxidized MWCNTs as an Oxidizing Agent and Dopant in MWCNT@Polypyrrole Composite Formationpl
dc.typeArticlepl
dc.rights.holder© Wiley-VCH GmbH, Weinheimpl
dc.identifier.doi10.1002/celc.202100566-
dc.description.EmailDr. M. Wysocka-Żołopa: monia@uwb.edu.plpl
dc.description.EmailProf. K. Winkler: winkler@uwb.edu.plpl
dc.description.AffiliationDr. M. Wysocka-Żołopa - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationDr. J. Breczko - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationDr. E. Grądzka - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationDr. A. Basa - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationDr. J. Goclon - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationDr. A. Dubis - Department of Chemistry, University of Bialystokpl
dc.description.AffiliationProf. K. Winkler - Department of Chemistry, University of Bialystokpl
dc.description.referencesT. F. Otero, S. Beaumont, Sens. Actuators B 2017, 253, 958–966.pl
dc.description.referencesM. Xue, F. Li, D. Chen, Z. Yang, X. Wang, J. Ji, Adv. Mater. 2016, 28, 8265–8270.pl
dc.description.referencesA. Nezhadali, L. Mehri, R. Shadmehri, Sens. Actuators B 2012, 171–172, 1125–1131.pl
dc.description.referencesL. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Enegy Environ. Sci. 2013, 6, 470–476.pl
dc.description.referencesM. S. Kim, J. H. Moon, P. J. Yoo, J. H. Park, J. Electrochem. Soc. 2012, 159, A1052-A1056.pl
dc.description.referencesD. P. Dubal, Z. Caban-Huertas, R. Holze, P. Gomez-Romero, Electrochim. Acta 2016, 191, 346–354.pl
dc.description.referencesY. Huang, J. Tao, W. Meng, M. Zhu, Y. Huang, Y. Fu, Y. Gao, C. Zhi, Nano Energy 2015, 11, 518–525.pl
dc.description.referencesS. S. Jeon, C. Kim, J. Ko, S. S. Im, J. Mater. Chem. 2011, 21, 8146–8151.pl
dc.description.referencesL. Y. Chang, C. T. Li, Y. Y. Li, C. P. Lee, M. H. Yeh, K. C. Ho, J. J. Lin, Electrochim. Acta 2015, 155, 263–271.pl
dc.description.referencesJ. Xu, M. Li, L. Wu, Y. Sun, L. Zhu, S. Gu, L. Liu, Z. Bai, D. Fang, W. Xu, J. Power Sources 2014, 257, 230–236.pl
dc.description.referencesN. Sangiorgi, A. Sangiorgi, F. Tarterini, A. Sanson, Electrochim. Acta 2019, 305, 322–328.pl
dc.description.referencesD. Maity, R. T. Rajendra Kumar, Biosens. Bioelectron. 2019, 130, 307–314.pl
dc.description.referencesE. Zor, Y. Oztekin, A. Ramanaviciene, Z. Anusevicius, H. Bingol, J. Barkauskas, M. Ersoz, A. Ramanavicius, J. Electrochem. Soc. 2014, 161, H3064-H3069.pl
dc.description.referencesP. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys. Condens. Matter. 2009, 21, 395502.pl
dc.description.referencesS. Gimme, S. Ehrlich, L. Goerigk, J. Comb. Chem. 2011, 32, 1456–1465.pl
dc.description.referencesG. Beamson, D. Briggs, High Resolution XPS of organic polymers – The Scienta ESCA300 Database, John Willey and Sons Ltd., Chichester, 1992.pl
dc.description.referencesD. Vanderbilt, Phys. Rev. B 1990, 41, 7892–7895.pl
dc.description.referencesR. Fletcher, Practical methods of optimization, Wiley, Chichester, 2008.pl
dc.description.referencesH. J. Monkhorstand, J. D. Pack, Phys. Rev. B 1976, 13, 5188–5192.pl
dc.description.referencesK. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272–1276.pl
dc.description.referencesA. Kokalj, J. Molec. Graph. Model. 1999, 17, 176–179.pl
dc.description.referencesJ. H. Chang, C. R. Aleman de Leon, I. W. Hunter, Langmuir 2012, 28, 4805–4810.pl
dc.description.referencesI. Rawal, A. Kaur, Sensor Actuat. A-Phys. 2013, 203, 92–102.pl
dc.description.referencesE. Jaworska, A. Kisiel, A. Michalska, K. Maksymiuk, Electroanalysis 2018, 30, 716–726.pl
dc.description.referencesS. S. Shinde, G. S. Gund, D. P. Dubal, S. B. Jambure, C. D. Lokhande, Electrochim. Acta 2014, 119, 1–10.pl
dc.description.referencesY. Shi, L. Pan, B. Liu, Y. Wang, Y. Cui, Z. Bao, G. Yu, J. Mater. Chem. A 2014, 2, 6086–6091.pl
dc.description.referencesM. Zhu, Y. Huang, Q. Deng, J. Zhou, Z. Pei, Q. Xue, Y. Huang, Z. Wang, H. Li, Q. Huang, C. Zhi, Adv. Energy Mater. 2016, 6, 1600969.pl
dc.description.referencesL. Tong, M. Gao, C. Jiang, K. Cai, J. Mater. Chem. A 2019, 7, 10751–10760.pl
dc.description.referencesL. Zhu, L. Wu, Y. Sun, M. Li, J. Xu, Z. Bai, G. Liang, L. Liu, D. Fang, W. Xu, RSC Adv. 2014, 4, 6261–6266.pl
dc.description.referencesQ. Xu, C. Wei, L. Fan, W. Rao, W. Xu, H. Liang, J. Xu, Appl. Surf. Sci. 2018, 460, 84–91.pl
dc.description.referencesL. Yang, Z. Shi, W. Yang, Electrochim. Acta 2015, 153, 76–82.pl
dc.description.referencesA. Porjazoska Kujundziski, D. Chamovska, M. Cvetkovska, T. Grchev, Int. J. Electrochem. Sci. 2012, 7, 4099–4113.pl
dc.description.referencesS. Khan, A. Majid, R. Raza, J. Mater. Sci. Mater. Electron. 2020, 31, 13597–13609.pl
dc.description.referencesS. Konwer, R. Boruah, S. K. Dolui, J. Electron. Mater. 2011, 40, 2248–2255.pl
dc.description.referencesB. Rikhari, S. P. Mani, N. Rajendran, J. Mater. Sci. 2020, 55, 5211–5229.pl
dc.description.referencesZ. Lv, Y. Chen, H. Wei, F. Li, Y. Hu, C. Wei, C. Feng, Electrochim. Acta 2013, 111, 366–373.pl
dc.description.referencesJ. Xue, Q. Sun, Y. Zhang, W. Mao, F. Li, C. Yin, ACS Omega 2020, 5, 10995–11004.pl
dc.description.referencesC. Bora, S. K. Dolui, Polymer 2012, 53, 923–932.pl
dc.description.referencesV. Chandra, K. S. Kim, Chem. Commun. 2011, 47, 3942–3944.pl
dc.description.referencesT. Qian, C. Yu, S. Wu, J. Shen, J. Mater. Chem. A 2013, 1, 6539–6542.pl
dc.description.referencesA. Wang, T. Qian, C. Yu, S. Wu, J. Shen, Appl. Phys. A 2015, 120, 693–698.pl
dc.description.referencesY. Chen, J. Li, L. Tan, Q. Li, X. Zhang, H. Xu, Electrochim. Acta 2017, 258, 43–50.pl
dc.description.referencesS. Dhibar, S. Sahoo, C. K. Das, J. Appl. Polym. Sci. 2013, 130, 554–562.pl
dc.description.referencesP. Gemeiner, J. Kulicek, M. Mikula, M. Hatala, L. Svorc, L. Hlavata, M. Micusik, M. Omastova, Synth. Met. 2015, 210, 323–331.pl
dc.description.referencesA. A. Iurchenkova, E. O. Federovskaya, I. P. Asanov, V. E. Arkhipov, K. M. Popov, K. I. Baskakova, A. V. Okotrub, Electrochim. Acta 2020, 335, 135700.pl
dc.description.referencesJ. Park, N. Raseda, E. S. Oh, K. Ryu, J. Appl. Polym. Sci. 2016, 133, 43307.pl
dc.description.referencesK. H. An, K. K. Jeon, J. K. Heo, S. C. Lim, D. J. Bae, Y. H. Lee, J. Electrochem. Soc. 2002, 149, A1058-A1062.pl
dc.description.referencesK. H. An, S. Y. Jeong, H. R. Hwang, Y. H. Lee, Adv. Mater. 2004, 16, 1005–1009.pl
dc.description.referencesJ. Wang, Y. Xu, X. Chen, X. Sun, Compos. Sci. Technol. 2007, 67, 2981–2985.pl
dc.description.referencesJ. Wang, K. Cai, S. Shen, J. Yin, Synth. Met. 2014, 195, 132–136.pl
dc.description.referencesA. Kausaite-Minkstimiene, V. Mazeiko, A. Ramanaviciene, A. Ramanavicius, Colloids Surf. A 2015, 483, 224–231.pl
dc.description.referencesK. Nishio, M. Fujimoto, O. Ando, H. Ono, T. Murayma, J. Appl. Electrochem. 1996, 26, 425–429.pl
dc.description.referencesH. K. Chitte, N. V. Bhat, A. V. Gore, G. N. Shind, Materials Sciences and Applications 2011, 2, 1491–1498.pl
dc.description.referencesK. Leonavicius, A. Ramanaviciene, A. Ramanavicius, Langmuir 2011, 17, 10970–10976.pl
dc.description.referencesN. German, A. Ramanaviciene, A. Ramanavicius, Polymer 2020, 12, 3026.pl
dc.description.referencesY. Yesi, I. Shown, A. Gnguly, T. T. Ngo, L. C. Chen, K. H. Chen, ChemSusChem 2016, 9, 370–378.pl
dc.description.references] X. Sun, Y. Xu, J. Wang, J. Solid State Electrochem. 2012, 16, 1781–1789.pl
dc.description.referencesX. Liu, L. Xue, Y. Lu, Y. Xia, Q. Li, J. Electroanal. Chem. 2020, 862, 114006.pl
dc.description.referencesJ. Kulicek, P. Gemeiner, M. Omastova, M. Micusik, Chem. Pap. 2018, 72, 1651–1667.pl
dc.description.references] Y. Zhu, K. Shi, I. Zhitomirsky, J. Mater. Chem. A 2014, 2, 14666–14673.pl
dc.description.referencesY. Chen, B. Lin, X. Zhang, J. Wang, C. Lai, Y. Sun, Y. Liu, H. Yang, J. Mater. Chem. A 2014, 2, 14118–14126.pl
dc.description.referencesS. M. Yuen, C. C. M. Ma, C. L. Chiang, J. A. Chang, S. W. Huang, S. C. Chen, C. Y. Chuang, C. C. Yang, M. H. Wei, Composites Part A 2007, 38, 2527–2535.pl
dc.description.referencesA. A. Koval’chuk, V. G. Shevchenko, A. N. Shchegolikhin, P. M. Nedorezova, A. N. Klyamkina, A. M. Aladyshev, Macromolecules 2008, 41, 7536–7542.pl
dc.description.referencesV. Datsyuk, M. Kalyva, K. Papagelis, J. Parthenios, D. Tasis, A. Siokou, I. Kallitsis, C. Galiotis, Carbon 2008, 46, 833–840.pl
dc.description.referencesZ. Qu, G. Wang, J. Nanosci. Nanotechnol. 2012, 1, 105–111.pl
dc.description.referencesN. Sezer, M. Koc, Surface Interfaces 2019, 14, 1–8.pl
dc.description.references] K. Shi, I. Zhitomirsky, J. Mater. Chem. A 2013, 1, 11614–11622.pl
dc.description.referencesP. C. Wang, J. Y. Yu, React. Funct. Polym. 2012, 72, 311–316.pl
dc.description.referencesX. M. Lang, Q. Y. Wan, C. H. Feng, X. J. Yue, W. D. Xu, S. S. Fan, Synth. Met. 2010, 160, 1800–1804pl
dc.description.referencesE. Hakansson, T. Lin, H. Wang, A. Kaynak, Synth. Met. 2006, 156, 1194–1202.pl
dc.description.referencesB. Weng, R. Shephard, J. Chen, G. G. Wallace, J. Mater. Chem. 2011, 21, 1918–1924.pl
dc.description.referencesR. K. Sharma, A. Karakoti, S. Seal, L. Zhai, J. Power Sources 2010, 195, 1256–1262.pl
dc.description.referencesI. Carrillo, E. S. de la Blanca, M. I. Redondo, M. V. Garcia, M. J. GonzalezTejera, J. L. G. Fierro, E. Enciso, Synth. Met. 2012, 162, 136–142.pl
dc.description.referencesD. K. Ariyanayagamkumarappa, I. Zhitomirsky, Synth. Met. 2012, 162, 868–872.pl
dc.description.referencesC. H. Feng, P. C. H. Chan, I. M. Husing, Electrochem. Commun. 2007, 9, 89.pl
dc.description.referencesX. Li, I. Zhitomirsky, J. Power Sources 2013, 221, 49–56.pl
dc.description.referencesS. Chen, I. Zhitomirsky, Mater. Lett. 2014, 135, 47–50.pl
dc.description.referencesY. Shu, K. Shi, I. Zhitomirsky, J. Power Sources 2014, 268, 233–239.pl
dc.description.referencesS. Chen, I. Zhitomirsky, Mater. Manuf. Processes 2016, 31, 1246–1252.pl
dc.description.referencesK. Shi, I. Zhitomirsky, ACS Appl. Mater. Interfaces 2013, 5, 13161–13170.pl
dc.description.referencesM. Kim, C. Lee, Y. D. Seo, S. Cho, J. Kim, G. Lee, Y. K. Kim, J. Jang, Chem. Mater. 2015, 27, 6238–6248.pl
dc.description.referencesS. Gomez, N. M. Rendtorff, E. F. Aglietti, Y. Sakka, G. Suarez, Chem. Phys. Lett. 2017, 689, 135–141.pl
dc.description.referencesNIST X-ray Photoelectron Spectroscopy Database 20, Version 4.1: http://srdata.nist.gov/xps/.pl
dc.description.referencesG. Beamson, D. Briggs, High Resolution XPS of organic polymers - The Scienta ESCA300 Database, John Willey and Sons Ltd., Chichester, 1992.pl
dc.description.referencesF. G. Pacheco, A. A. C. Cotta, H. F. Gorgulho, A. P. Santos, W. A. A. Macedo, C. A. Furtado, Appl. Surf. Sci. 2015, 357, 1015–1023.pl
dc.description.referencesJ. Cao, Y. Wang, J. Chen, X. Li, F. C. Walsh, J. H. Ouyang, D. Jia, Y. Zhou, J. Mater. Chem. A 2015, 3, 14445–14457.pl
dc.description.referencesC. Malitesta, I. Losito, L. Sabbatini, P. G. Zambonin, J. Electron Spectrosc. Relat. Phenom. 1995, 76, 629–634.pl
dc.description.referencesF. Tuinstra, J. L. Koenig, J. Chem. Phys. 1970, 53, 1126.pl
dc.description.referencesR. J. Nemanich, G. Lucovsky, S. A. Solin, Mater. Sci. Eng. 1977, 31, 157.pl
dc.description.referencesL. G. Cancado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhaes-Paniango, M. A. Pimenta, Appl. Phys. Lett. 2006, 88, 163106pl
dc.description.referencesD. B. Schuepfer, F. Badaczewski, J. M. Guerra-Castro, D. M. Hofmann, Ch. Heiliger, B. Smarsly, P. J. Klar, Carbon 2020, 161, 2020, 359–372.pl
dc.description.referencesV. Meunier, A. G. S. Filho, E. B. Barros, M. S. Dresselhaus, Rev. Mod. Phys. 2016, 88, 025005.pl
dc.description.referencesR. Beams, L. G. Canado, L. Novotny, J. Phys. Condens. Matter. 2015, 27, 083002.pl
dc.description.referencesP. Rai, D. R. Mohapatra, K. S. Hazra, D. S. Misra, J. Ghatak, P. V. Satyam, Chem. Phys. Lett. 2008, 455, 83.pl
dc.description.referencesJ. F. Rodriguez-Nieva, E. B. Barros, R. Saito, M. S. Dresselhaus, Phys. Rev. B 2014, 90, 235410.pl
dc.description.referencesJ. W. Kim, F. Liu, H. J. Choi, S. H. Hong, J. Joo, Polymer 2003, 44, 289–293.pl
dc.description.referencesA. T. Dubis, S. J. Grabowski, J. Phys. Chem. 2003, 107, 8723–8729.pl
dc.description.referencesA. Mizera, S. J. Grabowski, P. Ławniczak, M. Wysocka-Żołopa, A. T. Dubis, A. Łapiński, Polymer 2019, 164, 142–153.pl
dc.description.referencesJ. Tabačiarová, M. Mičušik, P. Fedorko, M. Omastowá, Polym. Degrad. Stab. 2015, 120, 392–401.pl
dc.description.referencesJ. B. Schlenoff, H. Xu, J. Electrochem. Soc. 1992, 139, 2397–2401.pl
dc.description.referencesP. Novok, B. Rosch, W. Vielstich, J. Electrochem. Soc. 1991, 138, 3300–3304.pl
dc.description.referencesE. R. Nightingale Jr., J. Phys. Chem. 1959, 63, 1381–1387.pl
dc.description.referencesJ. Goclon, M. Kozlowska, P. Rodziewicz, ChemPhysChem 2015, 16, 2775–2782.pl
dc.description.referencesJ. Goclon, K. Winkler, Chem. Select 2018, 3, 373–383.pl
dc.description.referencesM. A. Deshmukh, M. D. Shirsat, A. Ramanaviciene, A. Ramanavicius, Critical Rev. Anal. Chem. 2018, 48, 293–304.pl
dc.description.referencesA. Afzal, F. A. Abuilaiwi, A. Habib, M. Awais, S. B. Waje, M. A. Atieh, J. Power Sources 2017, 352, 174–186.pl
dc.description.referencesB. Gnana, S. Raja, T. H. Koa, J. Acharyaa, M. K. Seoc, M. S. Khilb, H. Y. Kima, B. S. Kim, Electrochim. Acta 2020, 334, 135627.pl
dc.description.referencesS. Wang, Y. Liang, W. Zhuo, H. Lei, M. S. Javed, B. Liu, Z. Wang, W. Mai, Mater. Chem. Front. 2021, 5, 1324–1329.pl
dc.description.referencesJ. P. Jyothibasu, M. Z. Chen, R. H. Lee, ACS Omega 2020, 5, 6441–6451.pl
dc.description.referencesQ. Zengab, J. Chen, F. Gaob, X. Tu, Y. Qian, Y. Yu, L. Lu, W. Wang, Synth. Met. 2021, 271, 116620.pl
dc.identifier.eissn2196-0216-
dc.description.volume8pl
dc.description.issue16pl
dc.description.firstpage1pl
dc.description.lastpage16pl
dc.identifier.citation2ChemElectroChempl
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-0433-7001-
Występuje w kolekcji(ach):Artykuły naukowe (WChem)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Oxidized_MWCNTs.pdf14,15 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja jest chroniona prawem autorskim (Copyright © Wszelkie prawa zastrzeżone)