REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17774
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorOkazaki, Hiroyuki-
dc.date.accessioned2025-01-03T09:47:00Z-
dc.date.available2025-01-03T09:47:00Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 133–139pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17774-
dc.description.abstractIn this study we are formalizing the optimization theory in Mizar. It is well known that geometric principles of linear vector space theory play fundamental roles in optimization. This article focuses on formalization of definitions and some theorems about dual spaces: we formalize orthogonal complements of real normed spaces, then we deal with minimum norm problems.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectdual spacepl
dc.subjectorthonormal complementpl
dc.subjectminimum norm problempl
dc.titleFormalization of Orthogonal Complements of Normed Spacespl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0010-
dc.description.AffiliationShinshu University, Nagano, Japanpl
dc.description.referencesSylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Formalization of real analysis: a survey of proof assistants and libraries. Mathematical Structures in Computer Science, pages 1–38, 2014.pl
dc.description.referencesSylvie Boldo, Fran¸cois Cl´ement, Florian Faissole, Vincent Martin, and Micaela Mayero. A Coq formal proof of the Lax-Milgram theorem. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, pages 79–89, New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3018610.3018625.pl
dc.description.referencesAdam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191–198, 2015. doi:10.1007/s10817-015-9345-1.pl
dc.description.referencesJohannes Holzl, Fabian Immler, and Brian Huffman. Type classes and filters for mathematical analysis in Isabelle/HOL. In Interactive Theorem Proving, pages 279–294. Springer, 2013.pl
dc.description.referencesChenyi Li, Ziyu Wang, Wanyi He, Yuxuan Wu, Shengyang Xu, and Zaiwen Wen. Formalization of complexity analysis of the first-order algorithms for convex optimization. arXiv preprint arXiv:2403.11437, 2024.pl
dc.description.referencesDavid G. Luenberger. Optimization by Vector Space Methods. John Wiley and Sons, 1969.pl
dc.description.referencesKeiko Narita, Noboru Endou, and Yasunari Shidama. Dual spaces and Hahn-Banach theorem. Formalized Mathematics, 22(1):69–77, 2014. doi:10.2478/forma-2014-0007.pl
dc.description.referencesLouis Nirenberg. Functional Analysis: Lectures Given in 1960–61. Notes by Lesley Sibner. New York University, 1961.pl
dc.description.referencesHiroyuki Okazaki. On the formalization of Gram-Schmidt process for orthonormalizing a set of vectors. Formalized Mathematics, 31(1):53–57, 2023. doi:10.2478/forma-2023-0005.pl
dc.description.referencesHiroyuki Okazaki. Formalization of orthogonal decomposition for Hilbert spaces. Formalized Mathematics, 30(4):295–299, 2022. doi:10.2478/forma-2022-0023.pl
dc.description.referencesColin Rothgang, Artur Korniłowicz, and Florian Rabe. A new export of the Mizar Mathematical Library. In Fairouz Kamareddine and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathematics, pages 205–210, Cham, 2021. Springer International Publishing. doi:10.1007/978-3-030-81097-9_17.pl
dc.description.referencesWalter Rudin. Functional Analysis. New York, McGraw-Hill, 2nd edition, 1991.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage133pl
dc.description.lastpage139pl
dc.identifier.citation2Formalized Mathematicspl
Występuje w kolekcji(ach):Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Formalization-of-Orthogonal-Complements-of-Normed-Spaces.pdf247,52 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons