REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17773
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorEndou, Noboru-
dc.contributor.authorShidama, Yasunari-
dc.date.accessioned2025-01-03T09:25:51Z-
dc.date.available2025-01-03T09:25:51Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 149–163pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17773-
dc.description.abstractThis paper deals with the interconversion between Cartesian product types and tuple types and their integration for measures in higher dimensional spaces. We prove the universality between both types and construct a measure (and also underlying integral) based on the set of tuple types.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectproduct measurepl
dc.subjectLebesgue integrationpl
dc.titleUniversality of Measure Spacepl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0012-
dc.description.AffiliationNoboru Endou - National Institute of Technology, Gifu College, 2236-2 Kamimakuwa, Motosu, Gifu, Japanpl
dc.description.AffiliationYasunari Shidama - Karuizawa Hotch 244-1, Nagano, Japanpl
dc.description.referencesCharalambos D. Aliprantis and Kim C. Border. Infinite dimensional analysis. Springer-Verlag, Berlin, Heidelberg, 2006.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesVladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1. Springer, 2007.pl
dc.description.referencesSylvie Boldo, Catherine Lelay, and Guillaume Melquiond. Improving real analysis in Coq: A user-friendly approach to integrals and derivatives. In Chris Hawblitzel and Dale Miller, editors, Certified Programs and Proofs – Second International Conference, CPP 2012, Kyoto, Japan, December 13–15, 2012. Proceedings, volume 7679 of Lecture Notes in Computer Science, pages 289–304. Springer, 2012. doi:10.1007/978-3-642-35308-6_22.pl
dc.description.referencesNoboru Endou. Fubini’s theorem on measure. Formalized Mathematics, 25(1):1–29, 2017. doi:10.1515/forma-2017-0001.pl
dc.description.referencesNoboru Endou and Yasunari Shidama. Multidimensional measure space and integration. Formalized Mathematics, 31(1):181–192, 2023. doi:10.2478/forma-2023-0017.pl
dc.description.referencesNoboru Endou and Yasunari Shidama. Integral of continuous functions of two variables. Formalized Mathematics, 31(1):309–324, 2023. doi:10.2478/forma-2023-0025.pl
dc.description.referencesJohannes H¨olzl and Armin Heller. Three chapters of measure theory in Isabelle/HOL. In Marko C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Interactive Theorem Proving (ITP 2011), volume 6898 of LNCS, pages 135–151, 2011.pl
dc.description.referencesTom Leinster. Basic Category Theory. Cambridge University Press, 2014.pl
dc.description.referencesBeata Perkowska. Functional sequence from a domain to a domain. Formalized Mathematics, 3(1):17–21, 1992pl
dc.description.referencesM.M. Rao. Measure Theory and Integration. Marcel Dekker, 2nd edition, 2004.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage149pl
dc.description.lastpage163pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-5922-2332-
Występuje w kolekcji(ach):Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Universality-of-Measure-Space.pdf299,84 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons