REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17769
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorWatase, Yasushige-
dc.date.accessioned2024-12-31T07:23:10Z-
dc.date.available2024-12-31T07:23:10Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 111–120pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17769-
dc.description.abstractIn this article, we prove the transcendence of the number e using the Mizar formalism, following Hurwitz’s proof. This article prepares the necessary definitions and lemmas. The main body of the proof will be presented separately.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjecttranscendental numberpl
dc.subjectalgebraic numberpl
dc.subjectring of polynomialspl
dc.titleFormal Proof of Transcendence of the Number e. Part Ipl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0008-
dc.description.AffiliationSuginami-ku Matsunoki 6, 3-21 Tokyo, Japanpl
dc.description.referencesAlan Baker. Transcendental Number Theory. Cambridge University Press, 1990.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesSophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and π as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76–87. ACM, 2016.doi:10.1145/2854065.2854072.pl
dc.description.referencesJesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71–84, 2011.pl
dc.description.referencesManuel Eberl. The transcendence of e. Archive of Formal Proofs, 2017. https://isa-afp.org/entries/E_Transcendental.html, Formal proof development.pl
dc.description.referencesCharles Hermite. Sur la fonction exponentielle. Gauthier-Villars, 1874.pl
dc.description.referencesAdolf Hurwitz. Beweis der Transcendenz der Zahl e. Mathematische Annalen, 43:220–221,1893.pl
dc.description.referencesArtur Korniłowicz. Differentiability of polynomials over reals. Formalized Mathematics, 25(1):31–37, 2017. doi:10.1515/forma-2017-0002.pl
dc.description.referencesArtur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. Formalized Mathematics, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029.pl
dc.description.referencesArtur Korniłowicz, Adam Naumowicz, and Adam Grabowski. All Liouville numbers are transcendental. Formalized Mathematics, 25(1):49–54, 2017. doi:10.1515/forma-2017-0004.pl
dc.description.referencesSerge Lang. Introduction to Transcendental Numbers. Addison-Wesley Pub. Co., 1966.pl
dc.description.referencesNorman D. Megill and David A. Wheeler. Metamath: A Computer Language for Mathe matical Proofs. Lulu Press, Morrisville, North Carolina, 2019.pl
dc.description.referencesLeonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language. In Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings, pages 625–635, Berlin, Heidelberg, 2021. Springer-Verlag. doi:10.1007/978-3-030-79876-5 37.pl
dc.description.referencesKarol Pąk. Eigenvalues of a linear transformation. Formalized Mathematics, 16(4):289–295, 2008. doi:10.2478/v10037-008-0035-x.pl
dc.description.referencesChristoph Schwarzweller. Field extensions and Kronecker’s construction. Formalized Mathematics, 27(3):229–235, 2019. doi:10.2478/forma-2019-0022.pl
dc.description.referencesChristoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Simple extensions. For malized Mathematics, 31(1):287–298, 2023. doi:10.2478/forma-2023-0023.pl
dc.description.referencesChristoph Schwarzweller, Artur Korniłowicz, and Agnieszka Rowińska-Schwarzweller. Some algebraic properties of polynomial rings. Formalized Mathematics, 24(3):227–237, 2016. doi:10.1515/forma-2016-0019.pl
dc.description.referencesYasushige Watase. Derivation of commutative rings and the Leibniz formula for power of derivation. Formalized Mathematics, 29(1):1–8, 2021. doi:10.2478/forma-2021-0001.pl
dc.description.referencesFreek Wiedijk. Formalizing 100 theorems. Available online at http://www.cs.ru.nl/~freek/100/.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage111pl
dc.description.lastpage120pl
dc.identifier.citation2Formalized Mathematicspl
Występuje w kolekcji(ach):Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Formal-Proof-of-Transcendence-of-the-Number-e-Part-I.pdf313,02 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons