Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji:
http://hdl.handle.net/11320/17769
Pełny rekord metadanych
Pole DC | Wartość | Język |
---|---|---|
dc.contributor.author | Watase, Yasushige | - |
dc.date.accessioned | 2024-12-31T07:23:10Z | - |
dc.date.available | 2024-12-31T07:23:10Z | - |
dc.date.issued | 2024 | - |
dc.identifier.citation | Formalized Mathematics, Volume 32, Issue 1, Pages 111–120 | pl |
dc.identifier.issn | 1426-2630 | - |
dc.identifier.uri | http://hdl.handle.net/11320/17769 | - |
dc.description.abstract | In this article, we prove the transcendence of the number e using the Mizar formalism, following Hurwitz’s proof. This article prepares the necessary definitions and lemmas. The main body of the proof will be presented separately. | pl |
dc.language.iso | en | pl |
dc.publisher | DeGruyter Open | pl |
dc.rights | Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | pl |
dc.rights.uri | https://creativecommons.org/licenses/by-sa/3.0/ | pl |
dc.subject | transcendental number | pl |
dc.subject | algebraic number | pl |
dc.subject | ring of polynomials | pl |
dc.title | Formal Proof of Transcendence of the Number e. Part I | pl |
dc.type | Article | pl |
dc.rights.holder | © 2024 The Author(s) | pl |
dc.rights.holder | CC BY-SA 3.0 license | pl |
dc.identifier.doi | 10.2478/forma-2024-0008 | - |
dc.description.Affiliation | Suginami-ku Matsunoki 6, 3-21 Tokyo, Japan | pl |
dc.description.references | Alan Baker. Transcendental Number Theory. Cambridge University Press, 1990. | pl |
dc.description.references | Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3- 319-20614-1. doi:10.1007/978-3-319-20615-8_17. | pl |
dc.description.references | Sophie Bernard, Yves Bertot, Laurence Rideau, and Pierre-Yves Strub. Formal proofs of transcendence for e and π as an application of multivariate and symmetric polynomials. In Jeremy Avigad and Adam Chlipala, editors, Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs, pages 76–87. ACM, 2016.doi:10.1145/2854065.2854072. | pl |
dc.description.references | Jesse Bingham. Formalizing a proof that e is transcendental. Journal of Formalized Reasoning, 4:71–84, 2011. | pl |
dc.description.references | Manuel Eberl. The transcendence of e. Archive of Formal Proofs, 2017. https://isa-afp.org/entries/E_Transcendental.html, Formal proof development. | pl |
dc.description.references | Charles Hermite. Sur la fonction exponentielle. Gauthier-Villars, 1874. | pl |
dc.description.references | Adolf Hurwitz. Beweis der Transcendenz der Zahl e. Mathematische Annalen, 43:220–221,1893. | pl |
dc.description.references | Artur Korniłowicz. Differentiability of polynomials over reals. Formalized Mathematics, 25(1):31–37, 2017. doi:10.1515/forma-2017-0002. | pl |
dc.description.references | Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. Formalized Mathematics, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029. | pl |
dc.description.references | Artur Korniłowicz, Adam Naumowicz, and Adam Grabowski. All Liouville numbers are transcendental. Formalized Mathematics, 25(1):49–54, 2017. doi:10.1515/forma-2017-0004. | pl |
dc.description.references | Serge Lang. Introduction to Transcendental Numbers. Addison-Wesley Pub. Co., 1966. | pl |
dc.description.references | Norman D. Megill and David A. Wheeler. Metamath: A Computer Language for Mathe matical Proofs. Lulu Press, Morrisville, North Carolina, 2019. | pl |
dc.description.references | Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language. In Automated Deduction – CADE 28: 28th International Conference on Automated Deduction, Virtual Event, July 12–15, 2021, Proceedings, pages 625–635, Berlin, Heidelberg, 2021. Springer-Verlag. doi:10.1007/978-3-030-79876-5 37. | pl |
dc.description.references | Karol Pąk. Eigenvalues of a linear transformation. Formalized Mathematics, 16(4):289–295, 2008. doi:10.2478/v10037-008-0035-x. | pl |
dc.description.references | Christoph Schwarzweller. Field extensions and Kronecker’s construction. Formalized Mathematics, 27(3):229–235, 2019. doi:10.2478/forma-2019-0022. | pl |
dc.description.references | Christoph Schwarzweller and Agnieszka Rowińska-Schwarzweller. Simple extensions. For malized Mathematics, 31(1):287–298, 2023. doi:10.2478/forma-2023-0023. | pl |
dc.description.references | Christoph Schwarzweller, Artur Korniłowicz, and Agnieszka Rowińska-Schwarzweller. Some algebraic properties of polynomial rings. Formalized Mathematics, 24(3):227–237, 2016. doi:10.1515/forma-2016-0019. | pl |
dc.description.references | Yasushige Watase. Derivation of commutative rings and the Leibniz formula for power of derivation. Formalized Mathematics, 29(1):1–8, 2021. doi:10.2478/forma-2021-0001. | pl |
dc.description.references | Freek Wiedijk. Formalizing 100 theorems. Available online at http://www.cs.ru.nl/~freek/100/. | pl |
dc.identifier.eissn | 1898-9934 | - |
dc.description.volume | 32 | pl |
dc.description.issue | 1 | pl |
dc.description.firstpage | 111 | pl |
dc.description.lastpage | 120 | pl |
dc.identifier.citation2 | Formalized Mathematics | pl |
Występuje w kolekcji(ach): | Formalized Mathematics, 2024, Volume 32, Issue 1 |
Pliki w tej pozycji:
Plik | Opis | Rozmiar | Format | |
---|---|---|---|---|
Formal-Proof-of-Transcendence-of-the-Number-e-Part-I.pdf | 313,02 kB | Adobe PDF | Otwórz |
Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL