REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17765
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorMacioszek, Violetta Katarzyna-
dc.contributor.authorMarciniak, Paulina-
dc.contributor.authorKononowicz, Andrzej Kiejstut-
dc.date.accessioned2024-12-27T09:48:15Z-
dc.date.available2024-12-27T09:48:15Z-
dc.date.issued2023-
dc.identifier.citationPathogens 2023, Volume 12, Issue 12, p. 1-20pl
dc.identifier.issn2076-0817-
dc.identifier.urihttp://hdl.handle.net/11320/17765-
dc.description.abstractSclerotinia sclerotiorum is a cause of a prevalent and destructive disease that attacks many horticultural food crops, such as lettuce. This soil-borne necrotrophic fungal pathogen causes significant economic losses in worldwide lettuce production annually. Furthermore, current methods utilized for management and combatting the disease, such as biocontrol, are insufficient. In this study, three cultivars of lettuce (one Crispy and two Leafy cultivars of red and green lettuce) were grown in central Poland (Lodz Voivodeship), a widely known Polish horticultural region. In the summer and early autumn, lettuce cultivars were grown in control and S. sclerotiorum-infected fields. The lettuce cultivars (Templin, Lollo Rossa, and Lollo Bionda) differed phenotypically and in terms of the survival of the fungal infection. The Crispy iceberg Templin was the most susceptible to S. sclerotiorum infection compared to the other cultivars during both vegetation seasons. The total content of phenolic compounds, flavonoids, and anthocyanins varied among cultivars and fluctuated during infection. Moreover, phenolic content was affected by vegetation season with alterable environmental factors such as air temperature, humidity, soil temperature, and pH. The most increased levels of phenolics, both flavonoids and anthocyanins in infected plants, were observed in the Leafy red Lollo Rossa cultivar in both crops. However, the highest survival/resistance to the fungus was noticed for Lollo Rossa in the summer crop and Lollo Bionda in the autumn crop.pl
dc.description.sponsorshipNational Centre for Research and Development, Poland, grant no. ERA-CAPS II/1/2015pl
dc.description.sponsorshipUniversity of Lodz, Poland, grant no. B1611000000211.01pl
dc.description.sponsorshipThe APC was funded by the University of Bialystok, Polandpl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectanthocyaninspl
dc.subjectepidemiologypl
dc.subjectflavonoidspl
dc.subjectvegetation seasonpl
dc.subjectlettucepl
dc.subjectphenolicspl
dc.subjectsoil-borne funguspl
dc.subjecttemperaturepl
dc.titleImpact of Sclerotinia sclerotiorum Infection on Lettuce (Lactuca sativa L.) Survival and Phenolics Content—A Case Study in a Horticulture Farm in Polandpl
dc.typeArticlepl
dc.rights.holder© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensepl
dc.identifier.doi10.3390/pathogens12121416-
dc.description.EmailVioletta Katarzyna Macioszek: v.macioszek@uwb.edu.plpl
dc.description.EmailAndrzej Kiejstut Kononowicz: andrzej.kononowicz@biol.uni.lodz.plpl
dc.description.AffiliationVioletta Katarzyna Macioszek - Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Polandpl
dc.description.AffiliationPaulina Marciniak - Wiesław and Izabela Królikiewicz Horticulture Market Farm, 97-306 Majków Średni, Poland; Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Polandpl
dc.description.AffiliationAndrzej Kiejstut Kononowicz - Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Polandpl
dc.description.referencesKřístková, E.; Doležalová, I.; Lebeda, A.; Vinter, V.; Novotná, A. Description of morphological characters of lettuce (Lactuca sativa L.) genetic resources. Hortic. Sci. 2008, 35, 113–129.pl
dc.description.referencesHan, R.; Truco, M.J.; Lavelle, D.O.; Michelmore, R.W. A Composite Analysis of Flowering Time Regulation in Lettuce. Front. Plant Sci. 2021, 12, 632708.pl
dc.description.referencesMou, B. Lettuce. Vegetables I—Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae; Prohens, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; pp. 75–116.pl
dc.description.referencesMou, B. Lettuce. Vegetables I—Asteraceae, Brassicaceae, Chenopodiaceae, and Cucurbitaceae; Prohens, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; pp. 75–116.pl
dc.description.referencesAkbar, S. Lactuca sativa L. (Asteraceae/Compositae). In Handbook of 200 Medicinal Plants; Akbar, S., Ed.; Springer: Cham, Switzerland, 2020; pp. 1067–1075.pl
dc.description.referencesRyder, E.J. Lettuce. In Leafy Salad Vegetables; Ryder, E.J., Ed.; Springer: Dordrecht, The Netherlands, 1979; pp. 13–94.pl
dc.description.referencesDamerum, A.; Chapman, M.A.; Taylor, G. Innovative breeding technologies in lettuce for improved post-harvest quality. Postharvest Biol. Technol. 2020, 168, 111266.pl
dc.description.referencesMulabagal, V.; Ngouajio, M.; Nair, A.; Zhang, Y.; Gottumukkala, A.L.; Nair, M.G. In vitro evaluation of red and green lettuce (Lactuca sativa) for functional food properties. Food Chem. 2010, 118, 300–306.pl
dc.description.referencesShi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; et al. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce—A Comprehensive Review. Antioxidants 2022, 11, 1158.pl
dc.description.referencesJeong, S.W.; Kik, G.-S.; Lee, W.S.; Kim, Y.-H.; Kang, N.J.; Jin, J.S.; Lee, G.M.; Kim, S.T.; El-Aty, A.M.; Shim, J.H.; et al. The effects of different night-time temperatures and cultivation durations on the polyphenolic contents of lettuce: Application of principal component analysis. J. Adv. Res. 2015, 6, 493–499.pl
dc.description.referencesKim, M.J.; Moon, Y.; Tou, J.C.; Mou, B.; Waterland, N.L. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). J. Food Compos. Anal. 2016, 49, 19–34.pl
dc.description.referencesBrazaityte, A.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Rasiukevičiutė, N.; Viršilė, A.; Miliauskienė, J.; Laužikė, K.; ˙ Valiuškaitė, A.; Denė, L.; Chrapačienė, S.; et al. Phenolic Compounds Content Evaluation of Lettuce Grown under Short-Term Preharvest Daytime or Nighttime Supplemental LEDs. Plants 2022, 11, 1123.pl
dc.description.referencesde Souza, A.S.N.; de Oliveira Schmidt, H.; Pagno, C.; Rodrigues, E.; Silva da Silva, M.A.; Hickmann Flôres, S.; de Oliveira Rios, A. Influence of cultivar and season on carotenoids and phenolic compounds from red lettuce influence of cultivar and season on lettuce. Food Res. Int. 2022, 155, 111110.pl
dc.description.referencesPérez-López, U.; Sgherri, C.; Miranda-Apodaca, J.; Micaelli, F.; Lacuesta, M.; Mena-Petite, A.; Frank Quartacci, M.; Muñoz-Rued, A. Concentration of phenolic compounds is increased in lettuce grown under high light intensity and elevated CO2 Plant Physiol.Biochem. 2018, 123, 233–241.pl
dc.description.referencesLiu, X.; Ardo, S.; Bunning, M.; Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.; Kendall, P. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT-Food Sci. Technol. 2007, 40, 552–557.pl
dc.description.referencesLlorach, R.; Martınez-Sanchez, A.; Tomas-Barberan, F.A.; Gil, M.I.; Ferreres, F. Characterisation of polyphenols and antioxidant properties of five lettuce varieties and escarole. Food Chem. 2008, 108, 1028–1038.pl
dc.description.referencesSinkovič, L.; Sinkovič, D.K.; Ugrinovič, K. Yield and nutritional quality of soil-cultivated crisphead lettuce (Lactuca sativa L. var. capitata) and corn salad (Valerianella spp.) harvested at different growing periods. Food Sci. Nutr. 2023, 11, 1755–1769.pl
dc.description.referencesTurini, T.A.; Joseph, S.V.; Baldwin, R.A.; Koike, S.T.; Natwick, E.T.; Ploeg, A.T.; Smith, R.F.; Dara, S.K.; Fennimore, S.A.; LeStrange, M.; et al. UC IPM Pest Management Guidelines: Lettuce. UC ANR Publication 3450. Davis, CA, USA. Available online: https://ipm.ucanr.edu/agriculture/lettuce/ (accessed on 30 April 2023).pl
dc.description.referencesFall, M.L.; Van der Heyden, H.; Carisse, O. Bremia lactucae infection efficiency in lettuce is modulated by temperature and leaf wetness duration under Quebec field conditions. Plant Dis. 2015, 99, 1010–1019.pl
dc.description.referencesShim, C.K.; Kim, M.J.; Kim, Y.K.; Jee, H.J. Evaluation of lettuce germplasm resistance to gray mold disease for organic cultivations. Plant Pathol. J. 2014, 30, 90–95.pl
dc.description.referencesIwaniuk, P.; Lozowicka, B. Biochemical compounds and stress markers in lettuce upon exposure to pathogenic Botrytis cinerea and fungicides inhibiting oxidative phosphorylation. Planta 2022, 255, 61.pl
dc.description.referencesPink, H.; Talbot, A.; Graceson, A.; Graham, J.; Higgins, G.; Taylor, A.; Jackson, A.C.; Truco, M.; Michelmore, R.; Yao, C.; et al. Identification of genetic loci in lettuce mediating quantitative resistance to fungal pathogens. Theor. Appl. Genet. 2022, 135, 2481–2500.pl
dc.description.referencesWu, B.M.; Subbarao, K.V. Analyses of Lettuce Drop Incidence and Population Structure of Sclerotinia sclerotiorum and S. minor. Phytopathology 2006, 96, 1322–1329.pl
dc.description.referencesLiang, X.; Rollins, J.A. Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum. Phytopathology 2018, 108, 1128–1140.pl
dc.description.referencesBolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D. Sclerotinia sclerotiorum (Lib.) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 2006, 7, 1–16.pl
dc.description.referencesSaharan, G.S.; Mehta, N. History and Host Range. In Sclerotinia Diseases of Crop Plants: Biology, Ecology and Disease Management; Saharan, G.S., Mehta, N., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 19–39.pl
dc.description.referencesDerbyshire, M.C.; Newman, T.E.; Khentry, Y.; Taiwo, A.O. The evolutionary and molecular features of the broad-host-range plant pathogen Sclerotinia sclerotiorum. Mol. Plant Pathol. 2022, 23, 1075–1090.pl
dc.description.referencesDurman, S.B.; Menendez, A.B.; Godeas, A.M. Variation in oxalic acid production and mycelial compatibility within field populations of Sclerotinia sclerotiorum. Soil Biol. Biochem. 2005, 37, 2180–2184.pl
dc.description.referencesWilliams, B.; Kabbage, M.; Kim, H.-J.; Britt, R.; Dickman, M.B. Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. PLoS Pathog. 2011, 7, e1002107.pl
dc.description.referencesErental, A.; Dickman, M.B.; Yarden, O. Sclerotial development in Sclerotinia sclerotiorum: Awakening molecular analysis of a “Dormant” structure. Fungal Biol. Rev. 2008, 22, 6–16.pl
dc.description.referencesMamo, B.E.; Eriksen, R.L.; Adhikari, N.D.; Hayes, R.J.; Mou, B.; Simko, I. Epidemiological Characterization of Lettuce Drop (Sclerotinia spp.) and Biophysical Features of the Host Identify Soft Stem as a Susceptibility Factor. PhytoFrontiers 2021, 1, 182–204.pl
dc.description.referencesMbengue, M.; Navaud, O.; Peyraud, R.; Barascud, M.; Badet, T.; Vincent, R.; Barbacci, A.; Raffaele, S. Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Front. Plant Sci. 2016, 7, 422pl
dc.description.referencesHayes, R.J.; Wu, B.M.; Pryor, B.M.; Chitrampalam, P.; Subbarao, K.V. Assessment of Resistance in Lettuce (Lactuca sativa L.) to Mycelial and Ascospore Infection by Sclerotinia minor Jagger and S. sclerotiorum (Lib.) de Bary. HortScience 2010, 45, 333–341.pl
dc.description.referencesMamo, B.E.; Hayes, R.J.; Truco, M.J.; Puri, K.D.; Michelmore, R.W.; Subbarao, K.; Simko, I. The genetics of resistance to lettuce drop (Sclerotinia spp.) in lettuce in a recombinant inbred line population from Reine des Glaces × Eruption. Theor. Appl. Genet. 2019, 132, 2439–2460.pl
dc.description.referencesMacioszek, V.K.; Wielanek, M.; Morkunas, I.; Ciereszko, I.; Kononowicz, A.K. Leaf position-dependent effect of Alternaria brassicicola development on host cell death, photosynthesis and secondary metabolites in Brassica juncea. Physiol. Plant. 2020, 168, 601–616.pl
dc.description.referencesLee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278.pl
dc.description.referencesHameed, M.K.; Umar, W.; Razzaq, A.; Aziz, T.; Maqsood, M.A.; Wei, S.; Niu, Q.; Huang, D.; Chang, L. Differential Metabolic Responses of Lettuce Grown in Soil, Substrate and Hydroponic Cultivation Systems under NH4+/NO3 − Application. Metabolites 2022, 12, 444.pl
dc.description.referencesNagano, S.; Mori, N.; Tomari, Y.; Mitsugi, N.; Deguchi, A.; Kashima, M.; Tezuka, A.; Nagano, A.J.; Usami, H.; Tanabata, T.; et al. Effect of differences in light source environment on transcriptome of leaf lettuce (Lactuca sativa L.) to optimize cultivation conditions. PLoS ONE 2022, 17, e0265994.pl
dc.description.referencesLei, C.; Engeseth, N.J. Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. LWT—Food Sci. Technol. 2021, 150, 111931.pl
dc.description.referencesBecker, C.; Urli´c, B.; Špika, M.J.; Kläring, H.P.; Krumbein, A.; Baldermann, S.; Ban, S.G.; Perica, S.; Schwarz, D. Nitrogen limited red and green leaf lettuce accumulate flavonoid glycosides, caffeic acid derivatives, and sucrose while losing chlorophylls, β-carotene and xanthophylls. PLoS ONE 2015, 10, e0142867.pl
dc.description.referencesMartínez-Ispizua, E.; Calatayud, Á.; Marsal, J.I.; Cannata, C.; Basile, F.; Abdelkhalik, A.; Soler, S.; Valcárcel, J.V.; Martínez-Cuenca, M.-R. The Nutritional Quality Potential of Microgreens, Baby Leaves, and Adult Lettuce: An Underexploited Nutraceutical Source. Foods 2022, 11, 423.pl
dc.description.referencesMedina-Lozano, I.; Bertolín, J.R.; Díaz, A. Nutritional value of commercial and traditional lettuce (Lactuca sativa L.) and wild relatives: Vitamin C and anthocyanin content. Food Chem. 2021, 359, 129864.pl
dc.description.referencesMyers, S.S.; Smith, M.R.; Guth, S.; Golden, C.D.; Vaitla, B.; Mueller, N.D.; Dangour, A.D.; Huybers, P. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu. Rev. Public Health 2017, 38, 259–277.pl
dc.description.referencesDuchenne-Moutien, R.A.; Neetoo, H. Climate Change and Emerging Food Safety Issues: A Review. J. Food Prot. 2021, 84, 1884–1897.pl
dc.description.referencesRaza, M.M.; Bebber, D.P. Climate change and plant pathogens. Curr. Opin. Microbiol. 2022, 70, 102233.pl
dc.description.referencesSingh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656.pl
dc.description.referencesChaloner, T.M.; Gurr, S.J.; Bebber, D.P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Chang. 2021, 11, 710–715.pl
dc.description.referencesMiranda-Apodaca, J.; Artetxe, U.; Aguado, I.; Martin-Souto, L.; Ramirez-Garcia, A.; Lacuesta, M.; Becerril, J.M.; Estonba, A.; Ortiz-Barredo, A.; Hernández, A.; et al. Stress Response to Climate Change and Postharvest Handling in Two Differently Pigmented Lettuce Genotypes: Impact on Alternaria alternata Invasion and Mycotoxin Production. Plants 2023, 12, 1304.pl
dc.description.referencesShahoveisi, F.; Manesh, M.R.; Del Río Mendoza, L.E. Modeling risk of Sclerotinia sclerotiorum-induced disease development on canola and dry bean using machine learning algorithms. Sci. Rep. 2022, 12, 864.pl
dc.description.referencesShahoveisi, F.; Del Río Mendoza, L.E. Effect of Wetness Duration and Incubation Temperature on Development of Ascosporic Infections by Sclerotinia sclerotiorum. Plant Dis. 2020, 104, 1817–1823.pl
dc.description.referencesClarkson, J.P.; Fawcett, L.; Anthony, S.D.; Young, C. A model for Sclerotinia sclerotiorum infection and disease development in lettuce, based on the effects of temperature, relative humidity and ascospore density. PLoS ONE 2014, 9, e94049.pl
dc.description.referencesWójtowicz, A.; Jajor, E.; Wójtowicz, M.; Pasternak, M. Influence of temperature on mycelial growth and number of sclerotia of Sclerotinia sclerotiorum the cause of Sclerotinia stem rot. Prog. Plant Prot. 2016, 56, 241–244.pl
dc.description.referencesGrube, R.; Ryder, E.J. Identification of lettuce (Lactuca sativa L.) germplasm with genetic resistance to drop caused by Sclerotinia minor. J. Am. Soc. Hortic. Sci. 2004, 129, 70–76.pl
dc.description.referencesTak, Y.; Kumar, M. Phenolics: A Key Defence Secondary Metabolite to Counter Biotic Stress. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A., Eds.; Springer: Singapore, 2020; pp. 309–329.pl
dc.description.referencesKulbat, K. The role of phenolic compounds in plant resistance. Biotechnol. Food Sci. 2016, 80, 97–108.pl
dc.description.referencesRomani, A.; Pinelli, P.; Galardi, C.; Sani, G.; Cimato, A.; Heimler, D. Polyphenols in greenhouse and open-air-grown lettuce. Food Chem. 2002, 79, 337–342.pl
dc.description.referencesGan, Y.Z.; Azrina, A. Antioxidant properties of selected varieties of lettuce (Lactuca sativa L.) commercially available in Malaysia. Int. Food Res. J. 2016, 23, 2357–2362.pl
dc.description.referencesKang, H.-M.; Saltveit, M.-E. Antioxidant capacity of lettuce leaf tissue increases after wounding. J. Agric. Food Chem. 2002, 50, 7536–7541.pl
dc.description.referencesChen, Y.; Huang, L.; Liang, X.; Dai, P.; Zhang, Y.; Li, B.; Lin, X.; Sun, C. Enhancement of polyphenolic metabolism as an adaptive response of lettuce (Lactuca sativa) roots to aluminum stress. Environ. Pollut. 2020, 261, 114230.pl
dc.description.referencesJain, A.; Singh, A.; Singh, S.; Singh, H.B. Phenols enhancement effect of microbial consortium in pea plants restrains Sclerotinia sclerotiorum. Biol. Control 2015, 89, 23–32.pl
dc.description.referencesKhoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779.pl
dc.description.referencesGazula, A.; Kleinhenz, M.D.; Scheerens, J.C.; Ling, P.P. Anthocyanin Levels in Nine Lettuce (Lactuca sativa) Cultivars: Influence of Planting Date and Relations among Analytic, Instrumented, and Visual Assessments of Color. HortScience 2007, 42, 232–238.pl
dc.description.referencesChon, S.-U.; Boo, H.-O.; Heo, B.-G.; Gorinstein, S. Anthocyanin content and the activities of polyphenol oxidase, peroxidase and phenylalanine ammonia-lyase in lettuce cultivars. Int. J. Food Sci. Nutr. 2012, 63, 45–48.pl
dc.description.referencesGazula, A.; Kleinhenz, M.D.; Streeter, J.G.; Miller, A.R. Temperature and cultivar effects on anthocyanin and chlorophyll b concentrations in three related Lollo Rosso lettuce cultivars. HortScience 2005, 40, 1731–1733.pl
dc.description.referencesSingh, M.; Avtar, R.; Lakra, N.; Pal, A.; Singh, V.K.; Punia, R.; Kumar, N.; Bishnoi, M.; Kumari, N.; Khedwal, R.S.; et al. Early oxidative burst and anthocyanin-mediated antioxidant defense mechanism impart resistance against Sclerotinia sclerotiorum in Indian mustard. Physiol. Mol. Plant Pathol. 2022, 120, 101847.pl
dc.description.referencesShalaby, S.; Larkov, O.; Lamdan, N.L.; Goldshmidt-Tran, O.; Horwitz, B.A. Plant phenolic acids induce programmed cell death of a fungal pathogen: MAPK signaling and survival of Cochliobolus heterostrophus. Environ. Microbiol. 2016, 18, 4188–4199.pl
dc.description.referencesSwierczyńska, I.; Perek, A.; Pieczul, K.; Jajor, E. Sensitivity of ´ Sclerotinia sclerotiorum to active substances of fungicides. Prog. Plant Prot. 2016, 56, 348–353.pl
dc.description.referencesChen, X.; Pizzatti, C.; Bonaldi, M.; Saracchi, M.; Erlacher, A.; Kunova, A.; Berg, G.; Cortesi, P. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes. Front. Microbiol. 2016, 7, 714.pl
dc.description.referencesAggeli, F.; Ziogas, I.; Gkizi, D.; Fragkogeorgi, G.A.; Tjamos, S.E. Novel biocontrol agents against Rhizoctonia solani and Sclerotinia sclerotiorum in lettuce. BioControl 2020, 65, 763–773.pl
dc.description.referencesSmolińska, U.; Kowalska, B. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum—A review. J. Plant Pathol. 2018, 100, 1–12.pl
dc.description.referencesWallis, C.M.; Galarneau, E.R.-A. Phenolic Compound Induction in Plant-Microbe and Plant-Insect Interactions: A Meta-Analysis. Front. Plant Sci. 2020, 11, 580753.pl
dc.description.volume12pl
dc.description.issue12pl
dc.description.firstpage1pl
dc.description.lastpage20pl
dc.identifier.citation2Pathogenspl
dc.identifier.orcid0000-0002-5143-4226-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0001-9950-5102-
Występuje w kolekcji(ach):Artykuły naukowe (WBiol)

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
V_K_Macioszek_P_Marciniak_A_K_Kononowicz_Impact_of_Sclerotinia_sclerotiorum_Infection.pdf12,57 MBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons