REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17756
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorPąk, Karol-
dc.contributor.authorKorniłowicz, Artur-
dc.date.accessioned2024-12-17T10:38:33Z-
dc.date.available2024-12-17T10:38:33Z-
dc.date.issued2024-
dc.identifier.citationFormalized Mathematics, Volume 32, Issue 1, Pages 93–110pl
dc.identifier.issn1426-2630-
dc.identifier.urihttp://hdl.handle.net/11320/17756-
dc.description.abstractThis paper formalizes problems 38, 58, 160, 164, 168, 171, 188, 195, 196, and 198 from “250 Problems in Elementary Number Theory” by Wacław Sierpiński.pl
dc.language.isoenpl
dc.publisherDeGruyter Openpl
dc.rightsAttribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)pl
dc.rights.urihttps://creativecommons.org/licenses/by-sa/3.0/pl
dc.subjectnumber theorypl
dc.subjectprime numberpl
dc.subjectDiophantine equationpl
dc.titleElementary Number Theory Problems. Part XV – Diophantine Equationspl
dc.typeArticlepl
dc.rights.holder© 2024 The Author(s)pl
dc.rights.holderCC BY-SA 3.0 licensepl
dc.identifier.doi10.2478/forma-2024-0007-
dc.description.AffiliationKarol Pąk - Faculty of Computer Science, University of Białystok, Polandpl
dc.description.AffiliationArtur Korniłowicz - Faculty of Computer Science, University of Białystok, Polandpl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8_17.pl
dc.description.referencesGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.pl
dc.description.referencesWenpai Chang, Hiroshi Yamazaki, and Yatsuka Nakamura. The inner product and con jugate of finite sequences of complex numbers. Formalized Mathematics, 13(3):367–373, 2005.pl
dc.description.referencesLeonard Eugene Dickson. History of Theory of Numbers, Volume II; Diophantine Analysis. Carnegie Institution, 1920.pl
dc.description.referencesAdam Grabowski. Elementary number theory problems. Part VI. Formalized Mathematics, 30(3):235–244, 2022. doi:10.2478/forma-2022-0019.pl
dc.description.referencesArtur Korniłowicz and Adam Naumowicz. Elementary number theory problems. Part V. Formalized Mathematics, 30(3):229–234, 2022. doi:10.2478/forma-2022-0018.pl
dc.description.referencesAlfred Moessner. General formulae for constructing and solving certain simultaneous equations. The Mathematics Student, 3, 1936.pl
dc.description.referencesLouis J. Mordell. Diophantine Equations. Academic Press, 1969.pl
dc.description.referencesAdam Naumowicz. Elementary number theory problems. Part I. Formalized Mathematics, 28(1):115–120, 2020. doi:10.2478/forma-2020-0010.pl
dc.description.referencesAdam Naumowicz. Dataset description: Formalization of elementary number theory in Mizar. In Christoph Benzmuller and Bruce R. Miller, editors, Intelligent Computer Mathematics – 13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020, Proceedings, volume 12236 of Lecture Notes in Computer Science, pages 303–308. Springer, 2020. doi:10.1007/978-3-030-53518-6_22.pl
dc.description.referencesAndrzej Schinzel. D´emonstration d’une cons´equence de l’hypoth`ese de Goldbach. Compositio Mathematica, 14:74–76, 1959.pl
dc.description.referencesWacław Sierpiński. Elementary Theory of Numbers. PWN, Warsaw, 1964.pl
dc.description.referencesWacław Sierpiński. 250 Problems in Elementary Number Theory. Elsevier, 1970.pl
dc.description.referencesWacław Sierpiński. Sur les d´ecompositions de nombres rationells en fractions primaires. Mathesis, 65:16–32, 1956.pl
dc.description.referencesRafał Ziobro. Prime factorization of sums and differences of two like powers. Formalized Mathematics, 24(3):187–198, 2016. doi:10.1515/forma-2016-0015.pl
dc.identifier.eissn1898-9934-
dc.description.volume32pl
dc.description.issue1pl
dc.description.firstpage93pl
dc.description.lastpage110pl
dc.identifier.citation2Formalized Mathematicspl
dc.identifier.orcid0000-0002-7099-1669-
dc.identifier.orcid0000-0002-4565-9082-
Występuje w kolekcji(ach):Artykuły naukowe (WInf)
Formalized Mathematics, 2024, Volume 32, Issue 1

Pliki w tej pozycji:
Plik Opis RozmiarFormat 
Elementary-Number-Theory-Problems-Part-XV-Diophantine-Equations.pdf334,23 kBAdobe PDFOtwórz
Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons