REPOZYTORIUM UNIWERSYTETU
W BIAŁYMSTOKU
UwB

Proszę używać tego identyfikatora do cytowań lub wstaw link do tej pozycji: http://hdl.handle.net/11320/17753
Pełny rekord metadanych
Pole DCWartośćJęzyk
dc.contributor.authorMacioszek, Violetta Katarzyna-
dc.contributor.authorSobczak, Mirosław-
dc.contributor.authorSkoczowski, Andrzej-
dc.contributor.authorOliwa, Jakub-
dc.contributor.authorMichlewska, Sylwia-
dc.contributor.authorGapińska, Magdalena-
dc.contributor.authorCiereszko, Iwona-
dc.contributor.authorKononowicz, Andrzej Kiejstut-
dc.date.accessioned2024-12-17T08:06:43Z-
dc.date.available2024-12-17T08:06:43Z-
dc.date.issued2021-
dc.identifier.citationInternational Journal of Molecular Sciences, Vol. 22 Issue 16 (2021), p. 8435pl
dc.identifier.issn1422-0067-
dc.identifier.urihttp://hdl.handle.net/11320/17753-
dc.description.abstractThe main goal of growing plants under various photoperiods is to optimize photosynthesis for using the effect of day length that often acts on plants in combination with biotic and/or abiotic stresses. In this study, Brassica juncea plants were grown under four different day-length regimes, namely., 8 h day/16 h night, 12 h day/12 h night, 16 h day/8 h night, and continuous light, and were infected with a necrotrophic fungus Alternaria brassicicola. The development of necroses on B. juncea leaves was strongly influenced by leaf position and day length. The largest necroses were formed on plants grown under a 16 h day/8 h night photoperiod at 72 h post-inoculation (hpi). The implemented day-length regimes had a great impact on leaf morphology in response to A. brassicicola infection. They also influenced the chlorophyll and carotenoid contents and photosynthesis efficiency. Both the 1st (the oldest) and 3rd infected leaves showed significantly higher minimal fluorescence (F0) compared to the control leaves. Significantly lower values of other investigated chlorophyll a fluorescence parameters, e.g., maximum quantum yield of photosystem II (Fv/Fm) and non-photochemical quenching (NPQ), were observed in both infected leaves compared to the control, especially at 72 hpi. The oldest infected leaf, of approximately 30% of the B. juncea plants, grown under long-day and continuous light conditions showed a ‘green island’ phenotype in the form of a green ring surrounding an area of necrosis at 48 hpi. This phenomenon was also reflected in changes in the chloroplast’s ultrastructure and accelerated senescence (yellowing) in the form of expanding chlorosis. Further research should investigate the mechanism and physiological aspects of ‘green islands’ formation in this pathosystem.pl
dc.description.sponsorshipThis research was funded by the National Science Centre, Poland, grant number 2011/01/B/NZ1/04315. The APC was funded by the University of Bialystok, Poland.pl
dc.language.isoenpl
dc.publisherMDPIpl
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectbiotic stresspl
dc.subjectcontinuous lightpl
dc.subjectchlorophyll a fluorescencepl
dc.subjectchloroplast ultrastructurepl
dc.subjectcarotenoidspl
dc.subject‘green islands’pl
dc.subjectphotoperiodpl
dc.titleThe Effect of Photoperiod on Necrosis Development, Photosynthetic Efficiency and ‘Green Islands’ Formation in Brassica juncea Infected with Alternaria brassicicolapl
dc.typeArticlepl
dc.rights.holderCopyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) licensepl
dc.identifier.doi10.3390/ijms22168435-
dc.description.EmailVioletta Katarzyna Macioszek: v.macioszek@uwb.edu.plpl
dc.description.AffiliationVioletta Katarzyna Macioszek - Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystokpl
dc.description.AffiliationMirosław Sobczak - Department of Botany, Institute of Biology, Warsaw University of Life Sciences—SGGWpl
dc.description.AffiliationAndrzej Skoczowski - Institute of Biology, Pedagogical University of Krakowpl
dc.description.AffiliationJakub Oliwa - Institute of Biology, Pedagogical University of Krakowpl
dc.description.AffiliationSylwia Michlewska - Laboratory of Microscopy Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodzpl
dc.description.AffiliationMagdalena Gapińska - Laboratory of Microscopy Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodzpl
dc.description.AffiliationIwona Ciereszko - Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystokpl
dc.description.AffiliationAndrzej Kiejstut Kononowicz - Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodzpl
dc.description.referencesCourbier, S.; Pierik, R. Canopy light quality modulates stress responses in plants. iScience 2019, 22, 441–452.pl
dc.description.referencesAdams, S.R.; Langton, F.A. Photoperiod and plant growth: A review. J. Hortic. Sci. Biotech. 2005, 80, 2–10.pl
dc.description.referencesRoeber, V.M.; Bajaj, I.; Rohde, M.; Schmülling, T.; Cortleven, A. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell Environ. 2021, 44, 645–664.pl
dc.description.referencesJohansson, M.; Staiger, D. Time to flower: Interplay between photoperiod and the circadian clock. J. Exp. Bot. 2015, 66, 719–730.pl
dc.description.referencesSong, Y.H.; Ito, S.; Imaizumi, T. Similarities in the circadian clock and photoperiodism in plants. Curr. Opin. Plant Biol. 2010, 13, 594–603.pl
dc.description.referencesJackson, S.D. Plant responses to photoperiod. New Phytol. 2009, 181, 517–531.pl
dc.description.referencesGreenham, K.; McClung, C. Integrating circadian dynamics with physiological processes in plants. Nat. Rev. Genet. 2015, 16, 598–610.pl
dc.description.referencesAgarwal, A.; Dutta Gupta, S. Impact of light-emitting-diodes (LEDs) and its potential on plant growth and development in controlled-environment plant production system. Curr. Biotechnol. 2016, 5, 28–43.pl
dc.description.referencesShim, J.S.; Imaizumi, T. Circadian clock and photoperiodic response in Arabidopsis: From seasonal flowering to redox homeostasis. Biochemistry 2015, 54, 157–170.pl
dc.description.referencesNitschke, S.; Cortleven, A.; Schmülling, T. Novel stress in plants by altering the photoperiod. Trends Plant Sci. 2017, 22, 913–916.pl
dc.description.referencesFrank, M.; Cortleven, A.; Novák, O.; Schmülling, T. Root-derived trans-zeatin cytokinin protects Arabidopsis plants against photoperiod stress. Plant Cell Environ. 2020, 43, 2637–2649.pl
dc.description.referencesKarpński, S.; Szechyńska-Hebda, M.; Wituszyńska, W.; Burdiak, P. Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant Cell Environ. 2013, 36, 736–744.pl
dc.description.referencesVelez-Ramirez, A.I.; van Ieperen, W.; Vreugdenhil, D.; Millenaar, F.F. Plants under continuous light. Trends Plant Sci. 2011, 16, 310–318.pl
dc.description.referencesSysoeva, M.I.; Markovskaya, E.F.; Shibaeva, T.G. Plants under continuous light: A review. Plant Stress 2010, 4, 5–17.pl
dc.description.referencesHaque, M.S.; Kjaer, K.H.; Rosenqvist, E.; Ottosen, C.-O. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species. Front. Plant Sci. 2015, 6, 522.pl
dc.description.referencesZha, L.; Liu, W.; Zhang, Y.; Zhou, C.; Shao, M. Morphological and physiological stress responses of lettuce to different intensities of continuous light. Front. Plant Sci. 2019, 10, 1440.pl
dc.description.referencesCasajús, V.; Civello, P.; Martínez, G.; Howe, K.; Fish, T.; Yang, Y.; Thannhauser, T.; Li, L.; Lobato, M.G. Effect of continuous white light illumination on glucosinolate metabolism during postharvest storage of broccoli. LWT Food Sci. Tech. 2021, 145, 111302.pl
dc.description.referencesAnjum, N.A.; Gill, S.S.; Ahmad, I.; Pacheco, M.; Duarte, A.C.; Umar, S.; Khan, N.A.; Pereira, M.E. The plant family Brassicaceae: An introduction. In The Plant Family Brassicaceae: Contribution towards Phytoremediation; Anjum, N.A., Ahmad, I., Pereira, M.E., Duarte, A.C., Umar, S., Khan, N.A., Eds.; Springer Science + Business Media, B.V.: Dordrecht, The Netherlands, 2012; pp. 1–34.pl
dc.description.referencesMacioszek, V.K.; Wielanek, M.; Morkunas, I.; Ciereszko, I.; Kononowicz, A.K. Leaf position-dependent effect of Alternaria brassicicola development on host cell death, photosynthesis and secondary metabolites in Brassica juncea. Physiol. Plant 2020, 168, 601–616.pl
dc.description.referencesMeena, P.D.; Awasthi, R.P.; Chattopadhyay, C.; Kolte, S.J.; Kumar, A. Alternaria blight: A chronic disease in rapeseed-mustard. J. Oilseed Brassica 2010, 1, 1–11.pl
dc.description.referencesKumar, D.; Maurya, N.; Bharati, Y.K.; Kumar, A.; Kumar, K.; Srivastava, K.; Chand, G.; Kushwaha, C.; Singh, S.K.; Mishra, R.K.; et al. Alternaria blight of oilseed Brassicas: A comprehensive review. Afr. J. Microbiol. Res. 2014, 8, 2816–2829.pl
dc.description.referencesSingh, K.P.; Kumari, P.; Rai, P.K. Current status of the disease-resistant gene(s)/QTLs, and Strategies for Improvement in Brassica juncea. Front. Plant Sci. 2021, 12, 617405.pl
dc.description.referencesNowicki, M.; Nowakowska, M.; Niezgoda, A.; Kozik, E.U. Alternaria black spot of crucifers: Symptoms, importance of disease and perspectives of resistance breeding. Veg. Crops Res. Bull. 2012, 76, 5–19.pl
dc.description.referencesMeur, G.; Shukla, P.; Dutta-Gupta, A.; Kirti, P.B. Characterization of Brassica juncea–Alternaria brassicicola interaction and jasmonic acid carboxyl methyl transferase expression. Plant Gene 2015, 3, 1–10.pl
dc.description.referencesMazumder, M.; Das, S.; Saha, U.; Chatterjee, M.; Bannerjee, K.; Basu, D. Salicylic acid-mediated establishment of the compatibility between Alternaria brassicicola and Brassica juncea is mitigated by abscisic acid in Sinapis alba. Plant Physiol. Biochem. 2013, 70, 43–51.pl
dc.description.referencesWalters, D.R.; McRoberts, N.; Fitt, B.D.L. Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biol. Rev. 2008, 83, 79–102.pl
dc.description.referencesGiron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M. Cytokinins as key regulators in plant–microbe–insect interactions: Connecting plant growth and defence. Funct. Ecol. 2013, 27, 599–609.pl
dc.description.referencesAldesuquy, H.S.; Abdel-Fattah, G.M.; Baka, Z.A. Changes in chlorophyll, polyamines and chloroplast ultrastructure of Puccinia striiformis induced ‘green islands’ on detached leaves of Triticum aestivum. Plant Physiol. Biochem. 2000, 38, 613–620.pl
dc.description.referencesChen, J.; Chen, Z.; Li, Z.; Zhao, Y.; Chen, X.; Wang-Pruski, G.; Guo, R. Effect of photoperiod on Chinese kale (Brassica alboglabra) sprouts under white or combined red and blue light. Front. Plant Sci. 2020, 11, 589746.pl
dc.description.referencesDigel, B.; Tavakol, E.; Verderio, G.; Tondelli, A.; Xu, X.; Cattivelli, L.; Rossini, L.; von Korff, M. Photoperiod-H1 (Ppd-H1) controls leaf size. Plant Physiol. 2016, 172, 405–415.pl
dc.description.referencesKaramat, U.; Sun, X.; Li, N.; Zhao, J. Genetic regulators of leaf size in Brassica crops. Hortic. Res. 2021, 8, 91.pl
dc.description.referencesRabbani, M.A.; Iwabuchi, A.; Fukuda, N.; Takayanagi, K. Flowering response of mustard (Brassica juncea L.) to temperature and photoperiod under field conditions. Jpn. J. Trop. Agric. 1997, 41, 195–202.pl
dc.description.referencesDoullah, M.A.U.; Meah, M.B.; Okazaki, K. Development of an effective screening method for partial resistance to Alternaria brassicicola (dark leaf spot) in Brassica rapa. Eur. J. Plant Pathol. 2006, 116, 33–43.pl
dc.description.referencesCoelho, P.S.; Valério, L.; Monteiro, A.A. Leaf position, leaf age and plant age affect the expression of downy mildew resistance in Brassica oleracea. Eur. J. Plant Pathol. 2009, 125, 179–188.pl
dc.description.referencesMacioszek, V.K.; Gapi ´nska, M.; Zmienko, A.; Sobczak, M.; Skoczowski, A.; Oliwa, J.; Kononowicz, A.K. Complexity of Brassica oleracea–Alternaria brassicicola susceptible interaction reveals downregulation of photosynthesis at ultrastructural, transcriptional, and physiological levels. Cells 2020, 9, 2329.pl
dc.description.referencesLiebelt, D.J.; Jordan, J.T.; Doherty, C.J. Only a matter of time: The impact of daily and seasonal rhythms on phytochemicals. Phytochem. Rev. 2019, 18, 1409–1433.pl
dc.description.referencesPark, C.H.; Kim, N.S.; Park, J.S.; Lee, S.Y.; Lee, J.-W.; Park, S.U. Effects of light-emitting diodes on the accumulation of glucosinolates and phenolic compounds in sprouting canola (Brassica napus L.). Foods 2019, 8, 76.pl
dc.description.referencesKarapetyana, S.; Dong, X. Redox and the circadian clock in plant immunity: A balancing act. Free Radic. Biol. Med. 2018, 119, 56–61.pl
dc.description.referencesLiu, Z.; Wang, H.; Xie, J.; Lv, J.; Zhang, G.; Hu, L.; Luo, S.; Li, L.; Yu, J. The roles of Cruciferae glucosinolates in disease and pest resistance. Plants 2021, 10, 1097.pl
dc.description.referencesIqbal, Z.; Iqbal, M.S.; Hashem, A.; Abd_Allah, E.F.; Ansari, M.I. Plant defense responses to biotic stress and its interplay with fluctuating dark/light conditions. Front. Plant Sci. 2021, 12, 631810.pl
dc.description.referencesKim, Y.B.; Chun, J.-H.; Kim, H.R.; Kim, S.-J.; Lim, Y.P.; Park, S.U. Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of Chinese cabbage seedlings under light and dark conditions. Nat. Prod. Commun. 2014, 9, 533–537.pl
dc.description.referencesHevia, M.A.; Canessa, P.; Larrondo, L.F. Circadian clocks and the regulation of virulence in fungi: Getting up to speed. Semin. Cell Dev. Biol. 2016, 57, 147–155.pl
dc.description.referencesSchumacher, J. How light affects the life of Botrytis. Fungal Genet. Biol. 2017, 106, 26–41.pl
dc.description.referencesRay, P.; Pandey, A.K. Influence of photoperiod on growth and mycoherbicidal potential of Alternaria alternata, a biocontrol agent of waterhyacinth. J. Mycol. Plant Pathol. 2009, 39, 458–461.pl
dc.description.referencesBilgin, D.D.; Zavala, J.A.; Zhu, J.; Clough, S.J.; Ort, D.R.; DeLucia, E.H. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 2010, 33, 1597–1613.pl
dc.description.referencesLu, Y.; Yao, J. Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense. Int. J. Mol. Sci. 2018, 19, 3900.pl
dc.description.referencesLaluk, K.; Mengiste, T. Necrotroph attacks on plants: Wanton destruction or covert extortion? Arab. Book 2010, 8, e0136.pl
dc.description.referencesSaharan, G.S.; Mehta, N.; Meena, P.D. Biochemistry of host-pathogen interaction. In Alternaria Diseases of Crucifers: Biology, Ecology and Disease Management; Saharan, G.S., Mehta, N., Meena, P.D., Eds.; Springer Science + Business Media: Singapore, 2016; pp. 167–174.pl
dc.description.referencesMunir, S.; Shahzad, A.N.; Qureshi, M.K. Acuities into tolerance mechanisms via different bioassay during Brassicaceae-Alternaria brassicicola interaction and its impact on yield. PLoS ONE 2020, 15, e0242545.pl
dc.description.referencesHura, K.; Hura, T.; Dziurka, K.; Dziurka, M. Carbohydrate, phenolic and antioxidant level in relation to chlorophyll a content in oilseed winter rape (Brassica napus L.) inoculated with Leptosphaeria maculans. Eur. J. Plant Pathol. 2015, 143, 291–303.pl
dc.description.referencesWurtzel, E.T. Changing form and function through carotenoids and synthetic biology. Plant. Phys. 2019, 179, 830–843.pl
dc.description.referencesKalaji, H.M.; Raˇcková, L.; Paganová, V.; Swoczyna, T.; Rusinowski, S.; Sitko, K. Can chlorophyll-a fluorescence parameters be used as bio-indicators to distinguish between drought and salinity stress in Tilia cordata Mill? Environ. Exp. Bot. 2018, 152, 149–157.pl
dc.description.referencesSkoczowski, A.; Odrzywolska-Hasiec, M.; Oliwa, J.; Ciereszko, I.; Korna´s, A. Ecophysiological variability of Alnus viridis (Chaix) DC. green alder leaves in the Bieszczady Mountains (Poland). Plants 2021, 10, 96.pl
dc.description.referencesPérez-Bueno, M.L.; Pineda, M.; Barón, M. Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Front. Plant Sci. 2019, 10, 1135.pl
dc.description.referencesMishra, M.K.; Srivastava, M.; Singh, G.; Tiwari, S.; Niranjan, A.; Kumari, N.; Misra, P. Overexpression of Withania somnifera SGTL1 gene resists the interaction of fungus Alternaria brassicicola in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 2017, 97, 11–19.pl
dc.description.referencesChen, S.; Dai, X.; Qiang, S.; Tang, Y. Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum. Plant Pathol. 2005, 54, 671–677.pl
dc.description.referencesMaxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668.pl
dc.description.referencesCho, Y. How the Necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma. Eukaryot. Cell 2015, 14, 335–344.pl
dc.description.referencesLichtenthaler, H.; Buschmann, C.; Knapp, M. Measurement of chlorophyll fluorescence kinetics (Kautsky effect) and the chlorophyll fluorescence decrease ratio (RFd-values) with the PAM-Fluorometer. In Analytical Methods in Plant. Stress Biology; Filek, M., Biesaga-Ko´scielniak, J., Marci ´nska, I., Eds.; The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences: Kraków, Poland, 2004; pp. 93–111.pl
dc.description.referencesYang, Z.-X.; Yang, Y.-F.; Yu, S.-Z.; Wang, R.-G.; Wang, Y.; Chen, H.-L. Photosynthetic photochemical and osmotic regulation changes in tobacco resistant and susceptible to Alternaria alternata. Trop. Plant Pathol. 2018, 43, 413–421.pl
dc.description.referencesGhosh, S.; Kanwar, P.; Jha, G. Alterations in rice chloroplast integrity photosynthesis and metabolome associated with pathogenesis of Rhizoctonia solani. Sci. Rep. 2017, 7, 41610.pl
dc.description.referencesSekulska-Nalewajko, J.; Kornaś, A.; Gocławski, J.; Miszalski, Z.; Kuźniak, E. Spatial referencing of chlorophyll fluorescence images for quantitative assessment of infection propagation in leaves demonstrated on the ice plant: Botrytis cinerea pathosystem. Plant Methods 2019, 15, 18.pl
dc.description.referencesMalnoë, A. Photoinhibition or photoprotection of photosynthesis? Update on new sustained quenching component, qH. Environ. Exp. Bot. 2018, 154, 123–133.pl
dc.description.referencesNiyogi, K.K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant. Physiol. Plant Mol. Biol. 1999, 50, 333–359.pl
dc.description.referencesCroxdale, J.G.; Omasa, K. Chlorophyll a fluorescence and carbon assimilation in developing leaves of light-grown cucumber. Plant Physiol. 1990, 93, 1078–1082.pl
dc.description.referencesBehr, M.; Humbeck, K.; Hause, G.; Deising, H.B.; Wirsel, S.G.R. The hemibiotroph Colletotrichum graminicola locally induces photosynthetically active green islands but globally accelerates senescence on aging maize leaves. Mol. Plant-Microbe Interact. 2009, 23, 879–892.pl
dc.description.referencesMoore, C.J.; Sutherland, P.W.; Forster, R.L.S.; Gardner, R.C.; MacDiarmid, R.M. Dark green islands in plant virus infection are the result of posttranscriptional gene silencing. Mol. Plant-Microbe Interact. 2001, 14, 939–946.pl
dc.description.referencesChen, L.-J.; Liu, J.; Zhao, F.-F.; Li, J.-Y.; Wang, S.-X.; Lin, H.-H.; Xi, D.-H. Characterisation of the dark green islands of cucumber mosaic virus infected Nicotiana tabacum. Plant Cell Rep. 2015, 34, 1225–1238.pl
dc.description.referencesHarding, H.; Williams, P.H.; McNabola, S.S. Chlorophyll changes, photosynthesis, and ultrastructure of chloroplasts in Albugo candida induced “green islands” on detached Brassica juncea cotyledons. Can. J. Bot. 1968, 46, 1229–1234.pl
dc.description.referencesMandahar, C.L.; Suri, R.A. Cytokinin-like activity in green islands formed around infection spots of Alternaria brassicicola on mustard leaves in nature and their role in pathogenesis. Biol. Plant 1987, 29, 76–79.pl
dc.description.referencesCortleven, A.; Leuendorf, J.E.; Frank, M.; Pezzetta, D.; Bolt, S.; Schmülling, T. Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ. 2019, 42, 998–1018.pl
dc.description.referencesMacioszek, V.K.; Lawrence, C.B.; Kononowicz, A.K. Infection cycle of Alternaria brassicicola on Brassica oleracea leaves under growth room conditions. Plant Pathol. 2018, 67, 1088–1096.pl
dc.description.referencesWellburn, A.R. Spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313.pl
dc.description.volume22pl
dc.description.issue16pl
dc.description.firstpage8435pl
dc.identifier.citation2International Journal of Molecular Sciencespl
dc.identifier.orcid0000-0002-5143-4226-
dc.identifier.orcid0000-0002-4660-6935-
dc.identifier.orcidbrakorcid-
dc.identifier.orcidbrakorcid-
dc.identifier.orcid0000-0002-8952-469X-
dc.identifier.orcid0000-0002-3125-7920-
dc.identifier.orcid0000-0003-2694-7991-
dc.identifier.orcidbrakorcid-
Występuje w kolekcji(ach):Artykuły naukowe (WBiol)

Pokaż uproszczony widok rekordu Zobacz statystyki


Pozycja ta dostępna jest na podstawie licencji Licencja Creative Commons CCL Creative Commons